# Copyright 2015 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

require 'date'
require 'google/apis/core/base_service'
require 'google/apis/core/json_representation'
require 'google/apis/core/hashable'
require 'google/apis/errors'

module Google
  module Apis
    module MlV1
      
      # Message that represents an arbitrary HTTP body. It should only be used for
      # payload formats that can't be represented as JSON, such as raw binary or an
      # HTML page. This message can be used both in streaming and non-streaming API
      # methods in the request as well as the response. It can be used as a top-level
      # request field, which is convenient if one wants to extract parameters from
      # either the URL or HTTP template into the request fields and also want access
      # to the raw HTTP body. Example: message GetResourceRequest ` // A unique
      # request id. string request_id = 1; // The raw HTTP body is bound to this field.
      # google.api.HttpBody http_body = 2; ` service ResourceService ` rpc
      # GetResource(GetResourceRequest) returns (google.api.HttpBody); rpc
      # UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty); ` Example
      # with streaming methods: service CaldavService ` rpc GetCalendar(stream google.
      # api.HttpBody) returns (stream google.api.HttpBody); rpc UpdateCalendar(stream
      # google.api.HttpBody) returns (stream google.api.HttpBody); ` Use of this type
      # only changes how the request and response bodies are handled, all other
      # features will continue to work unchanged.
      class GoogleApiHttpBody
        include Google::Apis::Core::Hashable
      
        # The HTTP Content-Type header value specifying the content type of the body.
        # Corresponds to the JSON property `contentType`
        # @return [String]
        attr_accessor :content_type
      
        # The HTTP request/response body as raw binary.
        # Corresponds to the JSON property `data`
        # NOTE: Values are automatically base64 encoded/decoded in the client library.
        # @return [String]
        attr_accessor :data
      
        # Application specific response metadata. Must be set in the first response for
        # streaming APIs.
        # Corresponds to the JSON property `extensions`
        # @return [Array<Hash<String,Object>>]
        attr_accessor :extensions
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @content_type = args[:content_type] if args.key?(:content_type)
          @data = args[:data] if args.key?(:data)
          @extensions = args[:extensions] if args.key?(:extensions)
        end
      end
      
      # 
      class GoogleCloudMlV1AutomatedStoppingConfigDecayCurveAutomatedStoppingConfig
        include Google::Apis::Core::Hashable
      
        # If true, measurement.elapsed_time is used as the x-axis of each Trials Decay
        # Curve. Otherwise, Measurement.steps will be used as the x-axis.
        # Corresponds to the JSON property `useElapsedTime`
        # @return [Boolean]
        attr_accessor :use_elapsed_time
        alias_method :use_elapsed_time?, :use_elapsed_time
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @use_elapsed_time = args[:use_elapsed_time] if args.key?(:use_elapsed_time)
        end
      end
      
      # The median automated stopping rule stops a pending trial if the trial's best
      # objective_value is strictly below the median 'performance' of all completed
      # trials reported up to the trial's last measurement. Currently, 'performance'
      # refers to the running average of the objective values reported by the trial in
      # each measurement.
      class GoogleCloudMlV1AutomatedStoppingConfigMedianAutomatedStoppingConfig
        include Google::Apis::Core::Hashable
      
        # If true, the median automated stopping rule applies to measurement.
        # use_elapsed_time, which means the elapsed_time field of the current trial's
        # latest measurement is used to compute the median objective value for each
        # completed trial.
        # Corresponds to the JSON property `useElapsedTime`
        # @return [Boolean]
        attr_accessor :use_elapsed_time
        alias_method :use_elapsed_time?, :use_elapsed_time
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @use_elapsed_time = args[:use_elapsed_time] if args.key?(:use_elapsed_time)
        end
      end
      
      # An observed value of a metric.
      class GoogleCloudMlV1HyperparameterOutputHyperparameterMetric
        include Google::Apis::Core::Hashable
      
        # The objective value at this training step.
        # Corresponds to the JSON property `objectiveValue`
        # @return [Float]
        attr_accessor :objective_value
      
        # The global training step for this metric.
        # Corresponds to the JSON property `trainingStep`
        # @return [Fixnum]
        attr_accessor :training_step
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @objective_value = args[:objective_value] if args.key?(:objective_value)
          @training_step = args[:training_step] if args.key?(:training_step)
        end
      end
      
      # A message representing a metric in the measurement.
      class GoogleCloudMlV1MeasurementMetric
        include Google::Apis::Core::Hashable
      
        # Required. Metric name.
        # Corresponds to the JSON property `metric`
        # @return [String]
        attr_accessor :metric
      
        # Required. The value for this metric.
        # Corresponds to the JSON property `value`
        # @return [Float]
        attr_accessor :value
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @metric = args[:metric] if args.key?(:metric)
          @value = args[:value] if args.key?(:value)
        end
      end
      
      # 
      class GoogleCloudMlV1StudyConfigParameterSpecCategoricalValueSpec
        include Google::Apis::Core::Hashable
      
        # Must be specified if type is `CATEGORICAL`. The list of possible categories.
        # Corresponds to the JSON property `values`
        # @return [Array<String>]
        attr_accessor :values
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @values = args[:values] if args.key?(:values)
        end
      end
      
      # 
      class GoogleCloudMlV1StudyConfigParameterSpecDiscreteValueSpec
        include Google::Apis::Core::Hashable
      
        # Must be specified if type is `DISCRETE`. A list of feasible points. The list
        # should be in strictly increasing order. For instance, this parameter might
        # have possible settings of 1.5, 2.5, and 4.0. This list should not contain more
        # than 1,000 values.
        # Corresponds to the JSON property `values`
        # @return [Array<Float>]
        attr_accessor :values
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @values = args[:values] if args.key?(:values)
        end
      end
      
      # 
      class GoogleCloudMlV1StudyConfigParameterSpecDoubleValueSpec
        include Google::Apis::Core::Hashable
      
        # Must be specified if type is `DOUBLE`. Maximum value of the parameter.
        # Corresponds to the JSON property `maxValue`
        # @return [Float]
        attr_accessor :max_value
      
        # Must be specified if type is `DOUBLE`. Minimum value of the parameter.
        # Corresponds to the JSON property `minValue`
        # @return [Float]
        attr_accessor :min_value
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @max_value = args[:max_value] if args.key?(:max_value)
          @min_value = args[:min_value] if args.key?(:min_value)
        end
      end
      
      # 
      class GoogleCloudMlV1StudyConfigParameterSpecIntegerValueSpec
        include Google::Apis::Core::Hashable
      
        # Must be specified if type is `INTEGER`. Maximum value of the parameter.
        # Corresponds to the JSON property `maxValue`
        # @return [Fixnum]
        attr_accessor :max_value
      
        # Must be specified if type is `INTEGER`. Minimum value of the parameter.
        # Corresponds to the JSON property `minValue`
        # @return [Fixnum]
        attr_accessor :min_value
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @max_value = args[:max_value] if args.key?(:max_value)
          @min_value = args[:min_value] if args.key?(:min_value)
        end
      end
      
      # Represents the spec to match categorical values from parent parameter.
      class GoogleCloudMlV1StudyConfigParameterSpecMatchingParentCategoricalValueSpec
        include Google::Apis::Core::Hashable
      
        # Matches values of the parent parameter with type 'CATEGORICAL'. All values
        # must exist in `categorical_value_spec` of parent parameter.
        # Corresponds to the JSON property `values`
        # @return [Array<String>]
        attr_accessor :values
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @values = args[:values] if args.key?(:values)
        end
      end
      
      # Represents the spec to match discrete values from parent parameter.
      class GoogleCloudMlV1StudyConfigParameterSpecMatchingParentDiscreteValueSpec
        include Google::Apis::Core::Hashable
      
        # Matches values of the parent parameter with type 'DISCRETE'. All values must
        # exist in `discrete_value_spec` of parent parameter.
        # Corresponds to the JSON property `values`
        # @return [Array<Float>]
        attr_accessor :values
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @values = args[:values] if args.key?(:values)
        end
      end
      
      # Represents the spec to match integer values from parent parameter.
      class GoogleCloudMlV1StudyConfigParameterSpecMatchingParentIntValueSpec
        include Google::Apis::Core::Hashable
      
        # Matches values of the parent parameter with type 'INTEGER'. All values must
        # lie in `integer_value_spec` of parent parameter.
        # Corresponds to the JSON property `values`
        # @return [Array<Fixnum>]
        attr_accessor :values
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @values = args[:values] if args.key?(:values)
        end
      end
      
      # Represents a metric to optimize.
      class GoogleCloudMlV1StudyConfigMetricSpec
        include Google::Apis::Core::Hashable
      
        # Required. The optimization goal of the metric.
        # Corresponds to the JSON property `goal`
        # @return [String]
        attr_accessor :goal
      
        # Required. The name of the metric.
        # Corresponds to the JSON property `metric`
        # @return [String]
        attr_accessor :metric
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @goal = args[:goal] if args.key?(:goal)
          @metric = args[:metric] if args.key?(:metric)
        end
      end
      
      # Represents a single parameter to optimize.
      class GoogleCloudMlV1StudyConfigParameterSpec
        include Google::Apis::Core::Hashable
      
        # The value spec for a 'CATEGORICAL' parameter.
        # Corresponds to the JSON property `categoricalValueSpec`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1StudyConfigParameterSpecCategoricalValueSpec]
        attr_accessor :categorical_value_spec
      
        # A child node is active if the parameter's value matches the child node's
        # matching_parent_values. If two items in child_parameter_specs have the same
        # name, they must have disjoint matching_parent_values.
        # Corresponds to the JSON property `childParameterSpecs`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1StudyConfigParameterSpec>]
        attr_accessor :child_parameter_specs
      
        # The value spec for a 'DISCRETE' parameter.
        # Corresponds to the JSON property `discreteValueSpec`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1StudyConfigParameterSpecDiscreteValueSpec]
        attr_accessor :discrete_value_spec
      
        # The value spec for a 'DOUBLE' parameter.
        # Corresponds to the JSON property `doubleValueSpec`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1StudyConfigParameterSpecDoubleValueSpec]
        attr_accessor :double_value_spec
      
        # The value spec for an 'INTEGER' parameter.
        # Corresponds to the JSON property `integerValueSpec`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1StudyConfigParameterSpecIntegerValueSpec]
        attr_accessor :integer_value_spec
      
        # Required. The parameter name must be unique amongst all ParameterSpecs.
        # Corresponds to the JSON property `parameter`
        # @return [String]
        attr_accessor :parameter
      
        # Represents the spec to match categorical values from parent parameter.
        # Corresponds to the JSON property `parentCategoricalValues`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1StudyConfigParameterSpecMatchingParentCategoricalValueSpec]
        attr_accessor :parent_categorical_values
      
        # Represents the spec to match discrete values from parent parameter.
        # Corresponds to the JSON property `parentDiscreteValues`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1StudyConfigParameterSpecMatchingParentDiscreteValueSpec]
        attr_accessor :parent_discrete_values
      
        # Represents the spec to match integer values from parent parameter.
        # Corresponds to the JSON property `parentIntValues`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1StudyConfigParameterSpecMatchingParentIntValueSpec]
        attr_accessor :parent_int_values
      
        # How the parameter should be scaled. Leave unset for categorical parameters.
        # Corresponds to the JSON property `scaleType`
        # @return [String]
        attr_accessor :scale_type
      
        # Required. The type of the parameter.
        # Corresponds to the JSON property `type`
        # @return [String]
        attr_accessor :type
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @categorical_value_spec = args[:categorical_value_spec] if args.key?(:categorical_value_spec)
          @child_parameter_specs = args[:child_parameter_specs] if args.key?(:child_parameter_specs)
          @discrete_value_spec = args[:discrete_value_spec] if args.key?(:discrete_value_spec)
          @double_value_spec = args[:double_value_spec] if args.key?(:double_value_spec)
          @integer_value_spec = args[:integer_value_spec] if args.key?(:integer_value_spec)
          @parameter = args[:parameter] if args.key?(:parameter)
          @parent_categorical_values = args[:parent_categorical_values] if args.key?(:parent_categorical_values)
          @parent_discrete_values = args[:parent_discrete_values] if args.key?(:parent_discrete_values)
          @parent_int_values = args[:parent_int_values] if args.key?(:parent_int_values)
          @scale_type = args[:scale_type] if args.key?(:scale_type)
          @type = args[:type] if args.key?(:type)
        end
      end
      
      # A message representing a parameter to be tuned. Contains the name of the
      # parameter and the suggested value to use for this trial.
      class GoogleCloudMlV1TrialParameter
        include Google::Apis::Core::Hashable
      
        # Must be set if ParameterType is DOUBLE or DISCRETE.
        # Corresponds to the JSON property `floatValue`
        # @return [Float]
        attr_accessor :float_value
      
        # Must be set if ParameterType is INTEGER
        # Corresponds to the JSON property `intValue`
        # @return [Fixnum]
        attr_accessor :int_value
      
        # The name of the parameter.
        # Corresponds to the JSON property `parameter`
        # @return [String]
        attr_accessor :parameter
      
        # Must be set if ParameterTypeis CATEGORICAL
        # Corresponds to the JSON property `stringValue`
        # @return [String]
        attr_accessor :string_value
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @float_value = args[:float_value] if args.key?(:float_value)
          @int_value = args[:int_value] if args.key?(:int_value)
          @parameter = args[:parameter] if args.key?(:parameter)
          @string_value = args[:string_value] if args.key?(:string_value)
        end
      end
      
      # Represents a hardware accelerator request config. Note that the
      # AcceleratorConfig can be used in both Jobs and Versions. Learn more about [
      # accelerators for training](/ml-engine/docs/using-gpus) and [accelerators for
      # online prediction](/ml-engine/docs/machine-types-online-prediction#gpus).
      class GoogleCloudMlV1AcceleratorConfig
        include Google::Apis::Core::Hashable
      
        # The number of accelerators to attach to each machine running the job.
        # Corresponds to the JSON property `count`
        # @return [Fixnum]
        attr_accessor :count
      
        # The type of accelerator to use.
        # Corresponds to the JSON property `type`
        # @return [String]
        attr_accessor :type
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @count = args[:count] if args.key?(:count)
          @type = args[:type] if args.key?(:type)
        end
      end
      
      # The request message for the AddTrialMeasurement service method.
      class GoogleCloudMlV1AddTrialMeasurementRequest
        include Google::Apis::Core::Hashable
      
        # A message representing a measurement.
        # Corresponds to the JSON property `measurement`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1Measurement]
        attr_accessor :measurement
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @measurement = args[:measurement] if args.key?(:measurement)
        end
      end
      
      # Options for automatically scaling a model.
      class GoogleCloudMlV1AutoScaling
        include Google::Apis::Core::Hashable
      
        # Optional. The minimum number of nodes to allocate for this model. These nodes
        # are always up, starting from the time the model is deployed. Therefore, the
        # cost of operating this model will be at least `rate` * `min_nodes` * number of
        # hours since last billing cycle, where `rate` is the cost per node-hour as
        # documented in the [pricing guide](/ml-engine/docs/pricing), even if no
        # predictions are performed. There is additional cost for each prediction
        # performed. Unlike manual scaling, if the load gets too heavy for the nodes
        # that are up, the service will automatically add nodes to handle the increased
        # load as well as scale back as traffic drops, always maintaining at least `
        # min_nodes`. You will be charged for the time in which additional nodes are
        # used. If `min_nodes` is not specified and AutoScaling is used with a [legacy (
        # MLS1) machine type](/ml-engine/docs/machine-types-online-prediction), `
        # min_nodes` defaults to 0, in which case, when traffic to a model stops (and
        # after a cool-down period), nodes will be shut down and no charges will be
        # incurred until traffic to the model resumes. If `min_nodes` is not specified
        # and AutoScaling is used with a [Compute Engine (N1) machine type](/ml-engine/
        # docs/machine-types-online-prediction), `min_nodes` defaults to 1. `min_nodes`
        # must be at least 1 for use with a Compute Engine machine type. Note that you
        # cannot use AutoScaling if your version uses [GPUs](#Version.FIELDS.
        # accelerator_config). Instead, you must use ManualScaling. You can set `
        # min_nodes` when creating the model version, and you can also update `min_nodes`
        # for an existing version: update_body.json: ` 'autoScaling': ` 'minNodes': 5 `
        # ` HTTP request: PATCH https://ml.googleapis.com/v1/`name=projects/*/models/*/
        # versions/*`?update_mask=autoScaling.minNodes -d @./update_body.json
        # Corresponds to the JSON property `minNodes`
        # @return [Fixnum]
        attr_accessor :min_nodes
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @min_nodes = args[:min_nodes] if args.key?(:min_nodes)
        end
      end
      
      # Configuration for Automated Early Stopping of Trials. If no
      # implementation_config is set, automated early stopping will not be run.
      class GoogleCloudMlV1AutomatedStoppingConfig
        include Google::Apis::Core::Hashable
      
        # 
        # Corresponds to the JSON property `decayCurveStoppingConfig`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1AutomatedStoppingConfigDecayCurveAutomatedStoppingConfig]
        attr_accessor :decay_curve_stopping_config
      
        # The median automated stopping rule stops a pending trial if the trial's best
        # objective_value is strictly below the median 'performance' of all completed
        # trials reported up to the trial's last measurement. Currently, 'performance'
        # refers to the running average of the objective values reported by the trial in
        # each measurement.
        # Corresponds to the JSON property `medianAutomatedStoppingConfig`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1AutomatedStoppingConfigMedianAutomatedStoppingConfig]
        attr_accessor :median_automated_stopping_config
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @decay_curve_stopping_config = args[:decay_curve_stopping_config] if args.key?(:decay_curve_stopping_config)
          @median_automated_stopping_config = args[:median_automated_stopping_config] if args.key?(:median_automated_stopping_config)
        end
      end
      
      # Represents output related to a built-in algorithm Job.
      class GoogleCloudMlV1BuiltInAlgorithmOutput
        include Google::Apis::Core::Hashable
      
        # Framework on which the built-in algorithm was trained.
        # Corresponds to the JSON property `framework`
        # @return [String]
        attr_accessor :framework
      
        # The Cloud Storage path to the `model/` directory where the training job saves
        # the trained model. Only set for successful jobs that don't use hyperparameter
        # tuning.
        # Corresponds to the JSON property `modelPath`
        # @return [String]
        attr_accessor :model_path
      
        # Python version on which the built-in algorithm was trained.
        # Corresponds to the JSON property `pythonVersion`
        # @return [String]
        attr_accessor :python_version
      
        # AI Platform runtime version on which the built-in algorithm was trained.
        # Corresponds to the JSON property `runtimeVersion`
        # @return [String]
        attr_accessor :runtime_version
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @framework = args[:framework] if args.key?(:framework)
          @model_path = args[:model_path] if args.key?(:model_path)
          @python_version = args[:python_version] if args.key?(:python_version)
          @runtime_version = args[:runtime_version] if args.key?(:runtime_version)
        end
      end
      
      # Request message for the CancelJob method.
      class GoogleCloudMlV1CancelJobRequest
        include Google::Apis::Core::Hashable
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
        end
      end
      
      # 
      class GoogleCloudMlV1Capability
        include Google::Apis::Core::Hashable
      
        # Available accelerators for the capability.
        # Corresponds to the JSON property `availableAccelerators`
        # @return [Array<String>]
        attr_accessor :available_accelerators
      
        # 
        # Corresponds to the JSON property `type`
        # @return [String]
        attr_accessor :type
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @available_accelerators = args[:available_accelerators] if args.key?(:available_accelerators)
          @type = args[:type] if args.key?(:type)
        end
      end
      
      # This message will be placed in the metadata field of a google.longrunning.
      # Operation associated with a CheckTrialEarlyStoppingState request.
      class GoogleCloudMlV1CheckTrialEarlyStoppingStateMetatdata
        include Google::Apis::Core::Hashable
      
        # The time at which the operation was submitted.
        # Corresponds to the JSON property `createTime`
        # @return [String]
        attr_accessor :create_time
      
        # The name of the study that the trial belongs to.
        # Corresponds to the JSON property `study`
        # @return [String]
        attr_accessor :study
      
        # The trial name.
        # Corresponds to the JSON property `trial`
        # @return [String]
        attr_accessor :trial
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @create_time = args[:create_time] if args.key?(:create_time)
          @study = args[:study] if args.key?(:study)
          @trial = args[:trial] if args.key?(:trial)
        end
      end
      
      # The request message for the CheckTrialEarlyStoppingState service method.
      class GoogleCloudMlV1CheckTrialEarlyStoppingStateRequest
        include Google::Apis::Core::Hashable
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
        end
      end
      
      # The message will be placed in the response field of a completed google.
      # longrunning.Operation associated with a CheckTrialEarlyStoppingState request.
      class GoogleCloudMlV1CheckTrialEarlyStoppingStateResponse
        include Google::Apis::Core::Hashable
      
        # The time at which operation processing completed.
        # Corresponds to the JSON property `endTime`
        # @return [String]
        attr_accessor :end_time
      
        # True if the Trial should stop.
        # Corresponds to the JSON property `shouldStop`
        # @return [Boolean]
        attr_accessor :should_stop
        alias_method :should_stop?, :should_stop
      
        # The time at which the operation was started.
        # Corresponds to the JSON property `startTime`
        # @return [String]
        attr_accessor :start_time
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @end_time = args[:end_time] if args.key?(:end_time)
          @should_stop = args[:should_stop] if args.key?(:should_stop)
          @start_time = args[:start_time] if args.key?(:start_time)
        end
      end
      
      # The request message for the CompleteTrial service method.
      class GoogleCloudMlV1CompleteTrialRequest
        include Google::Apis::Core::Hashable
      
        # A message representing a measurement.
        # Corresponds to the JSON property `finalMeasurement`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1Measurement]
        attr_accessor :final_measurement
      
        # Optional. A human readable reason why the trial was infeasible. This should
        # only be provided if `trial_infeasible` is true.
        # Corresponds to the JSON property `infeasibleReason`
        # @return [String]
        attr_accessor :infeasible_reason
      
        # Optional. True if the trial cannot be run with the given Parameter, and
        # final_measurement will be ignored.
        # Corresponds to the JSON property `trialInfeasible`
        # @return [Boolean]
        attr_accessor :trial_infeasible
        alias_method :trial_infeasible?, :trial_infeasible
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @final_measurement = args[:final_measurement] if args.key?(:final_measurement)
          @infeasible_reason = args[:infeasible_reason] if args.key?(:infeasible_reason)
          @trial_infeasible = args[:trial_infeasible] if args.key?(:trial_infeasible)
        end
      end
      
      # 
      class GoogleCloudMlV1Config
        include Google::Apis::Core::Hashable
      
        # The service account Cloud ML uses to run on TPU node.
        # Corresponds to the JSON property `tpuServiceAccount`
        # @return [String]
        attr_accessor :tpu_service_account
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @tpu_service_account = args[:tpu_service_account] if args.key?(:tpu_service_account)
        end
      end
      
      # ContainerPort represents a network port in a single container.
      class GoogleCloudMlV1ContainerPort
        include Google::Apis::Core::Hashable
      
        # Number of port to expose on the pod's IP address. This must be a valid port
        # number, 0 < x < 65536.
        # Corresponds to the JSON property `containerPort`
        # @return [Fixnum]
        attr_accessor :container_port
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @container_port = args[:container_port] if args.key?(:container_port)
        end
      end
      
      # Specify a custom container to deploy. Our ContainerSpec is a subset of the
      # Kubernetes Container specification. https://kubernetes.io/docs/reference/
      # generated/kubernetes-api/v1.10/#container-v1-core
      class GoogleCloudMlV1ContainerSpec
        include Google::Apis::Core::Hashable
      
        # Immutable. Arguments to the entrypoint. The docker image's CMD is used if this
        # is not provided. Variable references $(VAR_NAME) are expanded using the
        # container's environment. If a variable cannot be resolved, the reference in
        # the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with
        # a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded,
        # regardless of whether the variable exists or not. More info: https://
        # kubernetes.io/docs/tasks/inject-data-application/define-command-argument-
        # container/#running-a-command-in-a-shell
        # Corresponds to the JSON property `args`
        # @return [Array<String>]
        attr_accessor :args
      
        # Immutable. Entrypoint array. Not executed within a shell. The docker image's
        # ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME)
        # are expanded using the container's environment. If a variable cannot be
        # resolved, the reference in the input string will be unchanged. The $(VAR_NAME)
        # syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references
        # will never be expanded, regardless of whether the variable exists or not. More
        # info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-
        # argument-container/#running-a-command-in-a-shell
        # Corresponds to the JSON property `command`
        # @return [Array<String>]
        attr_accessor :command
      
        # Immutable. List of environment variables to set in the container.
        # Corresponds to the JSON property `env`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1EnvVar>]
        attr_accessor :env
      
        # Docker image name. More info: https://kubernetes.io/docs/concepts/containers/
        # images
        # Corresponds to the JSON property `image`
        # @return [String]
        attr_accessor :image
      
        # Immutable. List of ports to expose from the container. Exposing a port here
        # gives the system additional information about the network connections a
        # container uses, but is primarily informational. Not specifying a port here
        # DOES NOT prevent that port from being exposed. Any port which is listening on
        # the default "0.0.0.0" address inside a container will be accessible from the
        # network.
        # Corresponds to the JSON property `ports`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1ContainerPort>]
        attr_accessor :ports
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @args = args[:args] if args.key?(:args)
          @command = args[:command] if args.key?(:command)
          @env = args[:env] if args.key?(:env)
          @image = args[:image] if args.key?(:image)
          @ports = args[:ports] if args.key?(:ports)
        end
      end
      
      # Represents a custom encryption key configuration that can be applied to a
      # resource.
      class GoogleCloudMlV1EncryptionConfig
        include Google::Apis::Core::Hashable
      
        # The Cloud KMS resource identifier of the customer-managed encryption key used
        # to protect a resource, such as a training job. It has the following format: `
        # projects/`PROJECT_ID`/locations/`REGION`/keyRings/`KEY_RING_NAME`/cryptoKeys/`
        # KEY_NAME``
        # Corresponds to the JSON property `kmsKeyName`
        # @return [String]
        attr_accessor :kms_key_name
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @kms_key_name = args[:kms_key_name] if args.key?(:kms_key_name)
        end
      end
      
      # EnvVar represents an environment variable present in a Container.
      class GoogleCloudMlV1EnvVar
        include Google::Apis::Core::Hashable
      
        # Name of the environment variable. Must be a C_IDENTIFIER.
        # Corresponds to the JSON property `name`
        # @return [String]
        attr_accessor :name
      
        # Variable references $(VAR_NAME) are expanded using the previous defined
        # environment variables in the container and any service environment variables.
        # If a variable cannot be resolved, the reference in the input string will be
        # unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(
        # VAR_NAME). Escaped references will never be expanded, regardless of whether
        # the variable exists or not. Defaults to "".
        # Corresponds to the JSON property `value`
        # @return [String]
        attr_accessor :value
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @name = args[:name] if args.key?(:name)
          @value = args[:value] if args.key?(:value)
        end
      end
      
      # Request for explanations to be issued against a trained model.
      class GoogleCloudMlV1ExplainRequest
        include Google::Apis::Core::Hashable
      
        # Message that represents an arbitrary HTTP body. It should only be used for
        # payload formats that can't be represented as JSON, such as raw binary or an
        # HTML page. This message can be used both in streaming and non-streaming API
        # methods in the request as well as the response. It can be used as a top-level
        # request field, which is convenient if one wants to extract parameters from
        # either the URL or HTTP template into the request fields and also want access
        # to the raw HTTP body. Example: message GetResourceRequest ` // A unique
        # request id. string request_id = 1; // The raw HTTP body is bound to this field.
        # google.api.HttpBody http_body = 2; ` service ResourceService ` rpc
        # GetResource(GetResourceRequest) returns (google.api.HttpBody); rpc
        # UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty); ` Example
        # with streaming methods: service CaldavService ` rpc GetCalendar(stream google.
        # api.HttpBody) returns (stream google.api.HttpBody); rpc UpdateCalendar(stream
        # google.api.HttpBody) returns (stream google.api.HttpBody); ` Use of this type
        # only changes how the request and response bodies are handled, all other
        # features will continue to work unchanged.
        # Corresponds to the JSON property `httpBody`
        # @return [Google::Apis::MlV1::GoogleApiHttpBody]
        attr_accessor :http_body
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @http_body = args[:http_body] if args.key?(:http_body)
        end
      end
      
      # Message holding configuration options for explaining model predictions. There
      # are three feature attribution methods supported for TensorFlow models:
      # integrated gradients, sampled Shapley, and XRAI. [Learn more about feature
      # attributions.](/ai-platform/prediction/docs/ai-explanations/overview)
      class GoogleCloudMlV1ExplanationConfig
        include Google::Apis::Core::Hashable
      
        # Attributes credit by computing the Aumann-Shapley value taking advantage of
        # the model's fully differentiable structure. Refer to this paper for more
        # details: https://arxiv.org/abs/1703.01365
        # Corresponds to the JSON property `integratedGradientsAttribution`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1IntegratedGradientsAttribution]
        attr_accessor :integrated_gradients_attribution
      
        # An attribution method that approximates Shapley values for features that
        # contribute to the label being predicted. A sampling strategy is used to
        # approximate the value rather than considering all subsets of features.
        # Corresponds to the JSON property `sampledShapleyAttribution`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1SampledShapleyAttribution]
        attr_accessor :sampled_shapley_attribution
      
        # Attributes credit by computing the XRAI taking advantage of the model's fully
        # differentiable structure. Refer to this paper for more details: https://arxiv.
        # org/abs/1906.02825 Currently only implemented for models with natural image
        # inputs.
        # Corresponds to the JSON property `xraiAttribution`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1XraiAttribution]
        attr_accessor :xrai_attribution
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @integrated_gradients_attribution = args[:integrated_gradients_attribution] if args.key?(:integrated_gradients_attribution)
          @sampled_shapley_attribution = args[:sampled_shapley_attribution] if args.key?(:sampled_shapley_attribution)
          @xrai_attribution = args[:xrai_attribution] if args.key?(:xrai_attribution)
        end
      end
      
      # Returns service account information associated with a project.
      class GoogleCloudMlV1GetConfigResponse
        include Google::Apis::Core::Hashable
      
        # 
        # Corresponds to the JSON property `config`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1Config]
        attr_accessor :config
      
        # The service account Cloud ML uses to access resources in the project.
        # Corresponds to the JSON property `serviceAccount`
        # @return [String]
        attr_accessor :service_account
      
        # The project number for `service_account`.
        # Corresponds to the JSON property `serviceAccountProject`
        # @return [Fixnum]
        attr_accessor :service_account_project
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @config = args[:config] if args.key?(:config)
          @service_account = args[:service_account] if args.key?(:service_account)
          @service_account_project = args[:service_account_project] if args.key?(:service_account_project)
        end
      end
      
      # Represents the result of a single hyperparameter tuning trial from a training
      # job. The TrainingOutput object that is returned on successful completion of a
      # training job with hyperparameter tuning includes a list of
      # HyperparameterOutput objects, one for each successful trial.
      class GoogleCloudMlV1HyperparameterOutput
        include Google::Apis::Core::Hashable
      
        # All recorded object metrics for this trial. This field is not currently
        # populated.
        # Corresponds to the JSON property `allMetrics`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1HyperparameterOutputHyperparameterMetric>]
        attr_accessor :all_metrics
      
        # Represents output related to a built-in algorithm Job.
        # Corresponds to the JSON property `builtInAlgorithmOutput`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1BuiltInAlgorithmOutput]
        attr_accessor :built_in_algorithm_output
      
        # Output only. End time for the trial.
        # Corresponds to the JSON property `endTime`
        # @return [String]
        attr_accessor :end_time
      
        # An observed value of a metric.
        # Corresponds to the JSON property `finalMetric`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1HyperparameterOutputHyperparameterMetric]
        attr_accessor :final_metric
      
        # The hyperparameters given to this trial.
        # Corresponds to the JSON property `hyperparameters`
        # @return [Hash<String,String>]
        attr_accessor :hyperparameters
      
        # True if the trial is stopped early.
        # Corresponds to the JSON property `isTrialStoppedEarly`
        # @return [Boolean]
        attr_accessor :is_trial_stopped_early
        alias_method :is_trial_stopped_early?, :is_trial_stopped_early
      
        # Output only. Start time for the trial.
        # Corresponds to the JSON property `startTime`
        # @return [String]
        attr_accessor :start_time
      
        # Output only. The detailed state of the trial.
        # Corresponds to the JSON property `state`
        # @return [String]
        attr_accessor :state
      
        # The trial id for these results.
        # Corresponds to the JSON property `trialId`
        # @return [String]
        attr_accessor :trial_id
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @all_metrics = args[:all_metrics] if args.key?(:all_metrics)
          @built_in_algorithm_output = args[:built_in_algorithm_output] if args.key?(:built_in_algorithm_output)
          @end_time = args[:end_time] if args.key?(:end_time)
          @final_metric = args[:final_metric] if args.key?(:final_metric)
          @hyperparameters = args[:hyperparameters] if args.key?(:hyperparameters)
          @is_trial_stopped_early = args[:is_trial_stopped_early] if args.key?(:is_trial_stopped_early)
          @start_time = args[:start_time] if args.key?(:start_time)
          @state = args[:state] if args.key?(:state)
          @trial_id = args[:trial_id] if args.key?(:trial_id)
        end
      end
      
      # Represents a set of hyperparameters to optimize.
      class GoogleCloudMlV1HyperparameterSpec
        include Google::Apis::Core::Hashable
      
        # Optional. The search algorithm specified for the hyperparameter tuning job.
        # Uses the default AI Platform hyperparameter tuning algorithm if unspecified.
        # Corresponds to the JSON property `algorithm`
        # @return [String]
        attr_accessor :algorithm
      
        # Optional. Indicates if the hyperparameter tuning job enables auto trial early
        # stopping.
        # Corresponds to the JSON property `enableTrialEarlyStopping`
        # @return [Boolean]
        attr_accessor :enable_trial_early_stopping
        alias_method :enable_trial_early_stopping?, :enable_trial_early_stopping
      
        # Required. The type of goal to use for tuning. Available types are `MAXIMIZE`
        # and `MINIMIZE`. Defaults to `MAXIMIZE`.
        # Corresponds to the JSON property `goal`
        # @return [String]
        attr_accessor :goal
      
        # Optional. The TensorFlow summary tag name to use for optimizing trials. For
        # current versions of TensorFlow, this tag name should exactly match what is
        # shown in TensorBoard, including all scopes. For versions of TensorFlow prior
        # to 0.12, this should be only the tag passed to tf.Summary. By default, "
        # training/hptuning/metric" will be used.
        # Corresponds to the JSON property `hyperparameterMetricTag`
        # @return [String]
        attr_accessor :hyperparameter_metric_tag
      
        # Optional. The number of failed trials that need to be seen before failing the
        # hyperparameter tuning job. You can specify this field to override the default
        # failing criteria for AI Platform hyperparameter tuning jobs. Defaults to zero,
        # which means the service decides when a hyperparameter job should fail.
        # Corresponds to the JSON property `maxFailedTrials`
        # @return [Fixnum]
        attr_accessor :max_failed_trials
      
        # Optional. The number of training trials to run concurrently. You can reduce
        # the time it takes to perform hyperparameter tuning by adding trials in
        # parallel. However, each trail only benefits from the information gained in
        # completed trials. That means that a trial does not get access to the results
        # of trials running at the same time, which could reduce the quality of the
        # overall optimization. Each trial will use the same scale tier and machine
        # types. Defaults to one.
        # Corresponds to the JSON property `maxParallelTrials`
        # @return [Fixnum]
        attr_accessor :max_parallel_trials
      
        # Optional. How many training trials should be attempted to optimize the
        # specified hyperparameters. Defaults to one.
        # Corresponds to the JSON property `maxTrials`
        # @return [Fixnum]
        attr_accessor :max_trials
      
        # Required. The set of parameters to tune.
        # Corresponds to the JSON property `params`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1ParameterSpec>]
        attr_accessor :params
      
        # Optional. The prior hyperparameter tuning job id that users hope to continue
        # with. The job id will be used to find the corresponding vizier study guid and
        # resume the study.
        # Corresponds to the JSON property `resumePreviousJobId`
        # @return [String]
        attr_accessor :resume_previous_job_id
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @algorithm = args[:algorithm] if args.key?(:algorithm)
          @enable_trial_early_stopping = args[:enable_trial_early_stopping] if args.key?(:enable_trial_early_stopping)
          @goal = args[:goal] if args.key?(:goal)
          @hyperparameter_metric_tag = args[:hyperparameter_metric_tag] if args.key?(:hyperparameter_metric_tag)
          @max_failed_trials = args[:max_failed_trials] if args.key?(:max_failed_trials)
          @max_parallel_trials = args[:max_parallel_trials] if args.key?(:max_parallel_trials)
          @max_trials = args[:max_trials] if args.key?(:max_trials)
          @params = args[:params] if args.key?(:params)
          @resume_previous_job_id = args[:resume_previous_job_id] if args.key?(:resume_previous_job_id)
        end
      end
      
      # Attributes credit by computing the Aumann-Shapley value taking advantage of
      # the model's fully differentiable structure. Refer to this paper for more
      # details: https://arxiv.org/abs/1703.01365
      class GoogleCloudMlV1IntegratedGradientsAttribution
        include Google::Apis::Core::Hashable
      
        # Number of steps for approximating the path integral. A good value to start is
        # 50 and gradually increase until the sum to diff property is met within the
        # desired error range.
        # Corresponds to the JSON property `numIntegralSteps`
        # @return [Fixnum]
        attr_accessor :num_integral_steps
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @num_integral_steps = args[:num_integral_steps] if args.key?(:num_integral_steps)
        end
      end
      
      # Represents a training or prediction job.
      class GoogleCloudMlV1Job
        include Google::Apis::Core::Hashable
      
        # Output only. When the job was created.
        # Corresponds to the JSON property `createTime`
        # @return [String]
        attr_accessor :create_time
      
        # Output only. When the job processing was completed.
        # Corresponds to the JSON property `endTime`
        # @return [String]
        attr_accessor :end_time
      
        # Output only. The details of a failure or a cancellation.
        # Corresponds to the JSON property `errorMessage`
        # @return [String]
        attr_accessor :error_message
      
        # `etag` is used for optimistic concurrency control as a way to help prevent
        # simultaneous updates of a job from overwriting each other. It is strongly
        # suggested that systems make use of the `etag` in the read-modify-write cycle
        # to perform job updates in order to avoid race conditions: An `etag` is
        # returned in the response to `GetJob`, and systems are expected to put that
        # etag in the request to `UpdateJob` to ensure that their change will be applied
        # to the same version of the job.
        # Corresponds to the JSON property `etag`
        # NOTE: Values are automatically base64 encoded/decoded in the client library.
        # @return [String]
        attr_accessor :etag
      
        # Required. The user-specified id of the job.
        # Corresponds to the JSON property `jobId`
        # @return [String]
        attr_accessor :job_id
      
        # Optional. One or more labels that you can add, to organize your jobs. Each
        # label is a key-value pair, where both the key and the value are arbitrary
        # strings that you supply. For more information, see the documentation on using
        # labels.
        # Corresponds to the JSON property `labels`
        # @return [Hash<String,String>]
        attr_accessor :labels
      
        # Represents input parameters for a prediction job.
        # Corresponds to the JSON property `predictionInput`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1PredictionInput]
        attr_accessor :prediction_input
      
        # Represents results of a prediction job.
        # Corresponds to the JSON property `predictionOutput`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1PredictionOutput]
        attr_accessor :prediction_output
      
        # Output only. When the job processing was started.
        # Corresponds to the JSON property `startTime`
        # @return [String]
        attr_accessor :start_time
      
        # Output only. The detailed state of a job.
        # Corresponds to the JSON property `state`
        # @return [String]
        attr_accessor :state
      
        # Represents input parameters for a training job. When using the gcloud command
        # to submit your training job, you can specify the input parameters as command-
        # line arguments and/or in a YAML configuration file referenced from the --
        # config command-line argument. For details, see the guide to [submitting a
        # training job](/ai-platform/training/docs/training-jobs).
        # Corresponds to the JSON property `trainingInput`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1TrainingInput]
        attr_accessor :training_input
      
        # Represents results of a training job. Output only.
        # Corresponds to the JSON property `trainingOutput`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1TrainingOutput]
        attr_accessor :training_output
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @create_time = args[:create_time] if args.key?(:create_time)
          @end_time = args[:end_time] if args.key?(:end_time)
          @error_message = args[:error_message] if args.key?(:error_message)
          @etag = args[:etag] if args.key?(:etag)
          @job_id = args[:job_id] if args.key?(:job_id)
          @labels = args[:labels] if args.key?(:labels)
          @prediction_input = args[:prediction_input] if args.key?(:prediction_input)
          @prediction_output = args[:prediction_output] if args.key?(:prediction_output)
          @start_time = args[:start_time] if args.key?(:start_time)
          @state = args[:state] if args.key?(:state)
          @training_input = args[:training_input] if args.key?(:training_input)
          @training_output = args[:training_output] if args.key?(:training_output)
        end
      end
      
      # Response message for the ListJobs method.
      class GoogleCloudMlV1ListJobsResponse
        include Google::Apis::Core::Hashable
      
        # The list of jobs.
        # Corresponds to the JSON property `jobs`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1Job>]
        attr_accessor :jobs
      
        # Optional. Pass this token as the `page_token` field of the request for a
        # subsequent call.
        # Corresponds to the JSON property `nextPageToken`
        # @return [String]
        attr_accessor :next_page_token
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @jobs = args[:jobs] if args.key?(:jobs)
          @next_page_token = args[:next_page_token] if args.key?(:next_page_token)
        end
      end
      
      # 
      class GoogleCloudMlV1ListLocationsResponse
        include Google::Apis::Core::Hashable
      
        # Locations where at least one type of CMLE capability is available.
        # Corresponds to the JSON property `locations`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1Location>]
        attr_accessor :locations
      
        # Optional. Pass this token as the `page_token` field of the request for a
        # subsequent call.
        # Corresponds to the JSON property `nextPageToken`
        # @return [String]
        attr_accessor :next_page_token
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @locations = args[:locations] if args.key?(:locations)
          @next_page_token = args[:next_page_token] if args.key?(:next_page_token)
        end
      end
      
      # Response message for the ListModels method.
      class GoogleCloudMlV1ListModelsResponse
        include Google::Apis::Core::Hashable
      
        # The list of models.
        # Corresponds to the JSON property `models`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1Model>]
        attr_accessor :models
      
        # Optional. Pass this token as the `page_token` field of the request for a
        # subsequent call.
        # Corresponds to the JSON property `nextPageToken`
        # @return [String]
        attr_accessor :next_page_token
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @models = args[:models] if args.key?(:models)
          @next_page_token = args[:next_page_token] if args.key?(:next_page_token)
        end
      end
      
      # 
      class GoogleCloudMlV1ListStudiesResponse
        include Google::Apis::Core::Hashable
      
        # The studies associated with the project.
        # Corresponds to the JSON property `studies`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1Study>]
        attr_accessor :studies
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @studies = args[:studies] if args.key?(:studies)
        end
      end
      
      # The response message for the ListTrials method.
      class GoogleCloudMlV1ListTrialsResponse
        include Google::Apis::Core::Hashable
      
        # The trials associated with the study.
        # Corresponds to the JSON property `trials`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1Trial>]
        attr_accessor :trials
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @trials = args[:trials] if args.key?(:trials)
        end
      end
      
      # Response message for the ListVersions method.
      class GoogleCloudMlV1ListVersionsResponse
        include Google::Apis::Core::Hashable
      
        # Optional. Pass this token as the `page_token` field of the request for a
        # subsequent call.
        # Corresponds to the JSON property `nextPageToken`
        # @return [String]
        attr_accessor :next_page_token
      
        # The list of versions.
        # Corresponds to the JSON property `versions`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1Version>]
        attr_accessor :versions
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @next_page_token = args[:next_page_token] if args.key?(:next_page_token)
          @versions = args[:versions] if args.key?(:versions)
        end
      end
      
      # 
      class GoogleCloudMlV1Location
        include Google::Apis::Core::Hashable
      
        # Capabilities available in the location.
        # Corresponds to the JSON property `capabilities`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1Capability>]
        attr_accessor :capabilities
      
        # 
        # Corresponds to the JSON property `name`
        # @return [String]
        attr_accessor :name
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @capabilities = args[:capabilities] if args.key?(:capabilities)
          @name = args[:name] if args.key?(:name)
        end
      end
      
      # Options for manually scaling a model.
      class GoogleCloudMlV1ManualScaling
        include Google::Apis::Core::Hashable
      
        # The number of nodes to allocate for this model. These nodes are always up,
        # starting from the time the model is deployed, so the cost of operating this
        # model will be proportional to `nodes` * number of hours since last billing
        # cycle plus the cost for each prediction performed.
        # Corresponds to the JSON property `nodes`
        # @return [Fixnum]
        attr_accessor :nodes
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @nodes = args[:nodes] if args.key?(:nodes)
        end
      end
      
      # A message representing a measurement.
      class GoogleCloudMlV1Measurement
        include Google::Apis::Core::Hashable
      
        # Output only. Time that the trial has been running at the point of this
        # measurement.
        # Corresponds to the JSON property `elapsedTime`
        # @return [String]
        attr_accessor :elapsed_time
      
        # Provides a list of metrics that act as inputs into the objective function.
        # Corresponds to the JSON property `metrics`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1MeasurementMetric>]
        attr_accessor :metrics
      
        # The number of steps a machine learning model has been trained for. Must be non-
        # negative.
        # Corresponds to the JSON property `stepCount`
        # @return [Fixnum]
        attr_accessor :step_count
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @elapsed_time = args[:elapsed_time] if args.key?(:elapsed_time)
          @metrics = args[:metrics] if args.key?(:metrics)
          @step_count = args[:step_count] if args.key?(:step_count)
        end
      end
      
      # Represents a machine learning solution. A model can have multiple versions,
      # each of which is a deployed, trained model ready to receive prediction
      # requests. The model itself is just a container.
      class GoogleCloudMlV1Model
        include Google::Apis::Core::Hashable
      
        # Represents a version of the model. Each version is a trained model deployed in
        # the cloud, ready to handle prediction requests. A model can have multiple
        # versions. You can get information about all of the versions of a given model
        # by calling projects.models.versions.list.
        # Corresponds to the JSON property `defaultVersion`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1Version]
        attr_accessor :default_version
      
        # Optional. The description specified for the model when it was created.
        # Corresponds to the JSON property `description`
        # @return [String]
        attr_accessor :description
      
        # `etag` is used for optimistic concurrency control as a way to help prevent
        # simultaneous updates of a model from overwriting each other. It is strongly
        # suggested that systems make use of the `etag` in the read-modify-write cycle
        # to perform model updates in order to avoid race conditions: An `etag` is
        # returned in the response to `GetModel`, and systems are expected to put that
        # etag in the request to `UpdateModel` to ensure that their change will be
        # applied to the model as intended.
        # Corresponds to the JSON property `etag`
        # NOTE: Values are automatically base64 encoded/decoded in the client library.
        # @return [String]
        attr_accessor :etag
      
        # Optional. One or more labels that you can add, to organize your models. Each
        # label is a key-value pair, where both the key and the value are arbitrary
        # strings that you supply. For more information, see the documentation on using
        # labels.
        # Corresponds to the JSON property `labels`
        # @return [Hash<String,String>]
        attr_accessor :labels
      
        # Required. The name specified for the model when it was created. The model name
        # must be unique within the project it is created in.
        # Corresponds to the JSON property `name`
        # @return [String]
        attr_accessor :name
      
        # Optional. If true, online prediction nodes send `stderr` and `stdout` streams
        # to Stackdriver Logging. These can be more verbose than the standard access
        # logs (see `onlinePredictionLogging`) and can incur higher cost. However, they
        # are helpful for debugging. Note that [Stackdriver logs may incur a cost](/
        # stackdriver/pricing), especially if your project receives prediction requests
        # at a high QPS. Estimate your costs before enabling this option. Default is
        # false.
        # Corresponds to the JSON property `onlinePredictionConsoleLogging`
        # @return [Boolean]
        attr_accessor :online_prediction_console_logging
        alias_method :online_prediction_console_logging?, :online_prediction_console_logging
      
        # Optional. If true, online prediction access logs are sent to StackDriver
        # Logging. These logs are like standard server access logs, containing
        # information like timestamp and latency for each request. Note that [
        # Stackdriver logs may incur a cost](/stackdriver/pricing), especially if your
        # project receives prediction requests at a high queries per second rate (QPS).
        # Estimate your costs before enabling this option. Default is false.
        # Corresponds to the JSON property `onlinePredictionLogging`
        # @return [Boolean]
        attr_accessor :online_prediction_logging
        alias_method :online_prediction_logging?, :online_prediction_logging
      
        # Optional. The list of regions where the model is going to be deployed. Only
        # one region per model is supported. Defaults to 'us-central1' if nothing is set.
        # See the available regions for AI Platform services. Note: * No matter where a
        # model is deployed, it can always be accessed by users from anywhere, both for
        # online and batch prediction. * The region for a batch prediction job is set by
        # the region field when submitting the batch prediction job and does not take
        # its value from this field.
        # Corresponds to the JSON property `regions`
        # @return [Array<String>]
        attr_accessor :regions
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @default_version = args[:default_version] if args.key?(:default_version)
          @description = args[:description] if args.key?(:description)
          @etag = args[:etag] if args.key?(:etag)
          @labels = args[:labels] if args.key?(:labels)
          @name = args[:name] if args.key?(:name)
          @online_prediction_console_logging = args[:online_prediction_console_logging] if args.key?(:online_prediction_console_logging)
          @online_prediction_logging = args[:online_prediction_logging] if args.key?(:online_prediction_logging)
          @regions = args[:regions] if args.key?(:regions)
        end
      end
      
      # Represents the metadata of the long-running operation.
      class GoogleCloudMlV1OperationMetadata
        include Google::Apis::Core::Hashable
      
        # The time the operation was submitted.
        # Corresponds to the JSON property `createTime`
        # @return [String]
        attr_accessor :create_time
      
        # The time operation processing completed.
        # Corresponds to the JSON property `endTime`
        # @return [String]
        attr_accessor :end_time
      
        # Indicates whether a request to cancel this operation has been made.
        # Corresponds to the JSON property `isCancellationRequested`
        # @return [Boolean]
        attr_accessor :is_cancellation_requested
        alias_method :is_cancellation_requested?, :is_cancellation_requested
      
        # The user labels, inherited from the model or the model version being operated
        # on.
        # Corresponds to the JSON property `labels`
        # @return [Hash<String,String>]
        attr_accessor :labels
      
        # Contains the name of the model associated with the operation.
        # Corresponds to the JSON property `modelName`
        # @return [String]
        attr_accessor :model_name
      
        # The operation type.
        # Corresponds to the JSON property `operationType`
        # @return [String]
        attr_accessor :operation_type
      
        # Contains the project number associated with the operation.
        # Corresponds to the JSON property `projectNumber`
        # @return [Fixnum]
        attr_accessor :project_number
      
        # The time operation processing started.
        # Corresponds to the JSON property `startTime`
        # @return [String]
        attr_accessor :start_time
      
        # Represents a version of the model. Each version is a trained model deployed in
        # the cloud, ready to handle prediction requests. A model can have multiple
        # versions. You can get information about all of the versions of a given model
        # by calling projects.models.versions.list.
        # Corresponds to the JSON property `version`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1Version]
        attr_accessor :version
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @create_time = args[:create_time] if args.key?(:create_time)
          @end_time = args[:end_time] if args.key?(:end_time)
          @is_cancellation_requested = args[:is_cancellation_requested] if args.key?(:is_cancellation_requested)
          @labels = args[:labels] if args.key?(:labels)
          @model_name = args[:model_name] if args.key?(:model_name)
          @operation_type = args[:operation_type] if args.key?(:operation_type)
          @project_number = args[:project_number] if args.key?(:project_number)
          @start_time = args[:start_time] if args.key?(:start_time)
          @version = args[:version] if args.key?(:version)
        end
      end
      
      # Represents a single hyperparameter to optimize.
      class GoogleCloudMlV1ParameterSpec
        include Google::Apis::Core::Hashable
      
        # Required if type is `CATEGORICAL`. The list of possible categories.
        # Corresponds to the JSON property `categoricalValues`
        # @return [Array<String>]
        attr_accessor :categorical_values
      
        # Required if type is `DISCRETE`. A list of feasible points. The list should be
        # in strictly increasing order. For instance, this parameter might have possible
        # settings of 1.5, 2.5, and 4.0. This list should not contain more than 1,000
        # values.
        # Corresponds to the JSON property `discreteValues`
        # @return [Array<Float>]
        attr_accessor :discrete_values
      
        # Required if type is `DOUBLE` or `INTEGER`. This field should be unset if type
        # is `CATEGORICAL`. This value should be integers if type is `INTEGER`.
        # Corresponds to the JSON property `maxValue`
        # @return [Float]
        attr_accessor :max_value
      
        # Required if type is `DOUBLE` or `INTEGER`. This field should be unset if type
        # is `CATEGORICAL`. This value should be integers if type is INTEGER.
        # Corresponds to the JSON property `minValue`
        # @return [Float]
        attr_accessor :min_value
      
        # Required. The parameter name must be unique amongst all ParameterConfigs in a
        # HyperparameterSpec message. E.g., "learning_rate".
        # Corresponds to the JSON property `parameterName`
        # @return [String]
        attr_accessor :parameter_name
      
        # Optional. How the parameter should be scaled to the hypercube. Leave unset for
        # categorical parameters. Some kind of scaling is strongly recommended for real
        # or integral parameters (e.g., `UNIT_LINEAR_SCALE`).
        # Corresponds to the JSON property `scaleType`
        # @return [String]
        attr_accessor :scale_type
      
        # Required. The type of the parameter.
        # Corresponds to the JSON property `type`
        # @return [String]
        attr_accessor :type
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @categorical_values = args[:categorical_values] if args.key?(:categorical_values)
          @discrete_values = args[:discrete_values] if args.key?(:discrete_values)
          @max_value = args[:max_value] if args.key?(:max_value)
          @min_value = args[:min_value] if args.key?(:min_value)
          @parameter_name = args[:parameter_name] if args.key?(:parameter_name)
          @scale_type = args[:scale_type] if args.key?(:scale_type)
          @type = args[:type] if args.key?(:type)
        end
      end
      
      # Request for predictions to be issued against a trained model.
      class GoogleCloudMlV1PredictRequest
        include Google::Apis::Core::Hashable
      
        # Message that represents an arbitrary HTTP body. It should only be used for
        # payload formats that can't be represented as JSON, such as raw binary or an
        # HTML page. This message can be used both in streaming and non-streaming API
        # methods in the request as well as the response. It can be used as a top-level
        # request field, which is convenient if one wants to extract parameters from
        # either the URL or HTTP template into the request fields and also want access
        # to the raw HTTP body. Example: message GetResourceRequest ` // A unique
        # request id. string request_id = 1; // The raw HTTP body is bound to this field.
        # google.api.HttpBody http_body = 2; ` service ResourceService ` rpc
        # GetResource(GetResourceRequest) returns (google.api.HttpBody); rpc
        # UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty); ` Example
        # with streaming methods: service CaldavService ` rpc GetCalendar(stream google.
        # api.HttpBody) returns (stream google.api.HttpBody); rpc UpdateCalendar(stream
        # google.api.HttpBody) returns (stream google.api.HttpBody); ` Use of this type
        # only changes how the request and response bodies are handled, all other
        # features will continue to work unchanged.
        # Corresponds to the JSON property `httpBody`
        # @return [Google::Apis::MlV1::GoogleApiHttpBody]
        attr_accessor :http_body
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @http_body = args[:http_body] if args.key?(:http_body)
        end
      end
      
      # Represents input parameters for a prediction job.
      class GoogleCloudMlV1PredictionInput
        include Google::Apis::Core::Hashable
      
        # Optional. Number of records per batch, defaults to 64. The service will buffer
        # batch_size number of records in memory before invoking one Tensorflow
        # prediction call internally. So take the record size and memory available into
        # consideration when setting this parameter.
        # Corresponds to the JSON property `batchSize`
        # @return [Fixnum]
        attr_accessor :batch_size
      
        # Required. The format of the input data files.
        # Corresponds to the JSON property `dataFormat`
        # @return [String]
        attr_accessor :data_format
      
        # Required. The Cloud Storage location of the input data files. May contain
        # wildcards.
        # Corresponds to the JSON property `inputPaths`
        # @return [Array<String>]
        attr_accessor :input_paths
      
        # Optional. The maximum number of workers to be used for parallel processing.
        # Defaults to 10 if not specified.
        # Corresponds to the JSON property `maxWorkerCount`
        # @return [Fixnum]
        attr_accessor :max_worker_count
      
        # Use this field if you want to use the default version for the specified model.
        # The string must use the following format: `"projects/YOUR_PROJECT/models/
        # YOUR_MODEL"`
        # Corresponds to the JSON property `modelName`
        # @return [String]
        attr_accessor :model_name
      
        # Optional. Format of the output data files, defaults to JSON.
        # Corresponds to the JSON property `outputDataFormat`
        # @return [String]
        attr_accessor :output_data_format
      
        # Required. The output Google Cloud Storage location.
        # Corresponds to the JSON property `outputPath`
        # @return [String]
        attr_accessor :output_path
      
        # Required. The Google Compute Engine region to run the prediction job in. See
        # the available regions for AI Platform services.
        # Corresponds to the JSON property `region`
        # @return [String]
        attr_accessor :region
      
        # Optional. The AI Platform runtime version to use for this batch prediction. If
        # not set, AI Platform will pick the runtime version used during the
        # CreateVersion request for this model version, or choose the latest stable
        # version when model version information is not available such as when the model
        # is specified by uri.
        # Corresponds to the JSON property `runtimeVersion`
        # @return [String]
        attr_accessor :runtime_version
      
        # Optional. The name of the signature defined in the SavedModel to use for this
        # job. Please refer to [SavedModel](https://tensorflow.github.io/serving/
        # serving_basic.html) for information about how to use signatures. Defaults to [
        # DEFAULT_SERVING_SIGNATURE_DEF_KEY](https://www.tensorflow.org/api_docs/python/
        # tf/saved_model/signature_constants) , which is "serving_default".
        # Corresponds to the JSON property `signatureName`
        # @return [String]
        attr_accessor :signature_name
      
        # Use this field if you want to specify a Google Cloud Storage path for the
        # model to use.
        # Corresponds to the JSON property `uri`
        # @return [String]
        attr_accessor :uri
      
        # Use this field if you want to specify a version of the model to use. The
        # string is formatted the same way as `model_version`, with the addition of the
        # version information: `"projects/YOUR_PROJECT/models/YOUR_MODEL/versions/
        # YOUR_VERSION"`
        # Corresponds to the JSON property `versionName`
        # @return [String]
        attr_accessor :version_name
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @batch_size = args[:batch_size] if args.key?(:batch_size)
          @data_format = args[:data_format] if args.key?(:data_format)
          @input_paths = args[:input_paths] if args.key?(:input_paths)
          @max_worker_count = args[:max_worker_count] if args.key?(:max_worker_count)
          @model_name = args[:model_name] if args.key?(:model_name)
          @output_data_format = args[:output_data_format] if args.key?(:output_data_format)
          @output_path = args[:output_path] if args.key?(:output_path)
          @region = args[:region] if args.key?(:region)
          @runtime_version = args[:runtime_version] if args.key?(:runtime_version)
          @signature_name = args[:signature_name] if args.key?(:signature_name)
          @uri = args[:uri] if args.key?(:uri)
          @version_name = args[:version_name] if args.key?(:version_name)
        end
      end
      
      # Represents results of a prediction job.
      class GoogleCloudMlV1PredictionOutput
        include Google::Apis::Core::Hashable
      
        # The number of data instances which resulted in errors.
        # Corresponds to the JSON property `errorCount`
        # @return [Fixnum]
        attr_accessor :error_count
      
        # Node hours used by the batch prediction job.
        # Corresponds to the JSON property `nodeHours`
        # @return [Float]
        attr_accessor :node_hours
      
        # The output Google Cloud Storage location provided at the job creation time.
        # Corresponds to the JSON property `outputPath`
        # @return [String]
        attr_accessor :output_path
      
        # The number of generated predictions.
        # Corresponds to the JSON property `predictionCount`
        # @return [Fixnum]
        attr_accessor :prediction_count
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @error_count = args[:error_count] if args.key?(:error_count)
          @node_hours = args[:node_hours] if args.key?(:node_hours)
          @output_path = args[:output_path] if args.key?(:output_path)
          @prediction_count = args[:prediction_count] if args.key?(:prediction_count)
        end
      end
      
      # Represents the configuration for a replica in a cluster.
      class GoogleCloudMlV1ReplicaConfig
        include Google::Apis::Core::Hashable
      
        # Represents a hardware accelerator request config. Note that the
        # AcceleratorConfig can be used in both Jobs and Versions. Learn more about [
        # accelerators for training](/ml-engine/docs/using-gpus) and [accelerators for
        # online prediction](/ml-engine/docs/machine-types-online-prediction#gpus).
        # Corresponds to the JSON property `acceleratorConfig`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1AcceleratorConfig]
        attr_accessor :accelerator_config
      
        # Arguments to the entrypoint command. The following rules apply for
        # container_command and container_args: - If you do not supply command or args:
        # The defaults defined in the Docker image are used. - If you supply a command
        # but no args: The default EntryPoint and the default Cmd defined in the Docker
        # image are ignored. Your command is run without any arguments. - If you supply
        # only args: The default Entrypoint defined in the Docker image is run with the
        # args that you supplied. - If you supply a command and args: The default
        # Entrypoint and the default Cmd defined in the Docker image are ignored. Your
        # command is run with your args. It cannot be set if custom container image is
        # not provided. Note that this field and [TrainingInput.args] are mutually
        # exclusive, i.e., both cannot be set at the same time.
        # Corresponds to the JSON property `containerArgs`
        # @return [Array<String>]
        attr_accessor :container_args
      
        # The command with which the replica's custom container is run. If provided, it
        # will override default ENTRYPOINT of the docker image. If not provided, the
        # docker image's ENTRYPOINT is used. It cannot be set if custom container image
        # is not provided. Note that this field and [TrainingInput.args] are mutually
        # exclusive, i.e., both cannot be set at the same time.
        # Corresponds to the JSON property `containerCommand`
        # @return [Array<String>]
        attr_accessor :container_command
      
        # The Docker image to run on the replica. This image must be in Container
        # Registry. Learn more about [configuring custom containers](/ai-platform/
        # training/docs/distributed-training-containers).
        # Corresponds to the JSON property `imageUri`
        # @return [String]
        attr_accessor :image_uri
      
        # The AI Platform runtime version that includes a TensorFlow version matching
        # the one used in the custom container. This field is required if the replica is
        # a TPU worker that uses a custom container. Otherwise, do not specify this
        # field. This must be a [runtime version that currently supports training with
        # TPUs](/ml-engine/docs/tensorflow/runtime-version-list#tpu-support). Note that
        # the version of TensorFlow included in a runtime version may differ from the
        # numbering of the runtime version itself, because it may have a different [
        # patch version](https://www.tensorflow.org/guide/version_compat#
        # semantic_versioning_20). In this field, you must specify the runtime version (
        # TensorFlow minor version). For example, if your custom container runs
        # TensorFlow `1.x.y`, specify `1.x`.
        # Corresponds to the JSON property `tpuTfVersion`
        # @return [String]
        attr_accessor :tpu_tf_version
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @accelerator_config = args[:accelerator_config] if args.key?(:accelerator_config)
          @container_args = args[:container_args] if args.key?(:container_args)
          @container_command = args[:container_command] if args.key?(:container_command)
          @image_uri = args[:image_uri] if args.key?(:image_uri)
          @tpu_tf_version = args[:tpu_tf_version] if args.key?(:tpu_tf_version)
        end
      end
      
      # Configuration for logging request-response pairs to a BigQuery table. Online
      # prediction requests to a model version and the responses to these requests are
      # converted to raw strings and saved to the specified BigQuery table. Logging is
      # constrained by [BigQuery quotas and limits](/bigquery/quotas). If your project
      # exceeds BigQuery quotas or limits, AI Platform Prediction does not log request-
      # response pairs, but it continues to serve predictions. If you are using [
      # continuous evaluation](/ml-engine/docs/continuous-evaluation/), you do not
      # need to specify this configuration manually. Setting up continuous evaluation
      # automatically enables logging of request-response pairs.
      class GoogleCloudMlV1RequestLoggingConfig
        include Google::Apis::Core::Hashable
      
        # Required. Fully qualified BigQuery table name in the following format: "
        # project_id.dataset_name.table_name" The specified table must already exist,
        # and the "Cloud ML Service Agent" for your project must have permission to
        # write to it. The table must have the following [schema](/bigquery/docs/schemas)
        # : Field nameType Mode model STRING REQUIRED model_version STRING REQUIRED time
        # TIMESTAMP REQUIRED raw_data STRING REQUIRED raw_prediction STRING NULLABLE
        # groundtruth STRING NULLABLE
        # Corresponds to the JSON property `bigqueryTableName`
        # @return [String]
        attr_accessor :bigquery_table_name
      
        # Percentage of requests to be logged, expressed as a fraction from 0 to 1. For
        # example, if you want to log 10% of requests, enter `0.1`. The sampling window
        # is the lifetime of the model version. Defaults to 0.
        # Corresponds to the JSON property `samplingPercentage`
        # @return [Float]
        attr_accessor :sampling_percentage
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @bigquery_table_name = args[:bigquery_table_name] if args.key?(:bigquery_table_name)
          @sampling_percentage = args[:sampling_percentage] if args.key?(:sampling_percentage)
        end
      end
      
      # RouteMap is used to override HTTP paths sent to a Custom Container. If
      # specified, the HTTP server implemented in the ContainerSpec must support the
      # route. If unspecified, standard HTTP paths will be used.
      class GoogleCloudMlV1RouteMap
        include Google::Apis::Core::Hashable
      
        # HTTP path to send health check requests.
        # Corresponds to the JSON property `health`
        # @return [String]
        attr_accessor :health
      
        # HTTP path to send prediction requests.
        # Corresponds to the JSON property `predict`
        # @return [String]
        attr_accessor :predict
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @health = args[:health] if args.key?(:health)
          @predict = args[:predict] if args.key?(:predict)
        end
      end
      
      # An attribution method that approximates Shapley values for features that
      # contribute to the label being predicted. A sampling strategy is used to
      # approximate the value rather than considering all subsets of features.
      class GoogleCloudMlV1SampledShapleyAttribution
        include Google::Apis::Core::Hashable
      
        # The number of feature permutations to consider when approximating the Shapley
        # values.
        # Corresponds to the JSON property `numPaths`
        # @return [Fixnum]
        attr_accessor :num_paths
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @num_paths = args[:num_paths] if args.key?(:num_paths)
        end
      end
      
      # All parameters related to scheduling of training jobs.
      class GoogleCloudMlV1Scheduling
        include Google::Apis::Core::Hashable
      
        # Optional. The maximum job running time, expressed in seconds. The field can
        # contain up to nine fractional digits, terminated by `s`. If not specified,
        # this field defaults to `604800s` (seven days). If the training job is still
        # running after this duration, AI Platform Training cancels it. The duration is
        # measured from when the job enters the `RUNNING` state; therefore it does not
        # overlap with the duration limited by Scheduling.max_wait_time. For example, if
        # you want to ensure your job runs for no more than 2 hours, set this field to `
        # 7200s` (2 hours * 60 minutes / hour * 60 seconds / minute). If you submit your
        # training job using the `gcloud` tool, you can [specify this field in a `config.
        # yaml` file](/ai-platform/training/docs/training-jobs#
        # formatting_your_configuration_parameters). For example: ```yaml trainingInput:
        # scheduling: maxRunningTime: 7200s ```
        # Corresponds to the JSON property `maxRunningTime`
        # @return [String]
        attr_accessor :max_running_time
      
        # Optional. The maximum job wait time, expressed in seconds. The field can
        # contain up to nine fractional digits, terminated by `s`. If not specified,
        # there is no limit to the wait time. The minimum for this field is `1800s` (30
        # minutes). If the training job has not entered the `RUNNING` state after this
        # duration, AI Platform Training cancels it. After the job begins running, it
        # can no longer be cancelled due to the maximum wait time. Therefore the
        # duration limited by this field does not overlap with the duration limited by
        # Scheduling.max_running_time. For example, if the job temporarily stops running
        # and retries due to a [VM restart](/ai-platform/training/docs/overview#restarts)
        # , this cannot lead to a maximum wait time cancellation. However, independently
        # of this constraint, AI Platform Training might stop a job if there are too
        # many retries due to exhausted resources in a region. The following example
        # describes how you might use this field: To cancel your job if it doesn't start
        # running within 1 hour, set this field to `3600s` (1 hour * 60 minutes / hour *
        # 60 seconds / minute). If the job is still in the `QUEUED` or `PREPARING` state
        # after an hour of waiting, AI Platform Training cancels the job. If you submit
        # your training job using the `gcloud` tool, you can [specify this field in a `
        # config.yaml` file](/ai-platform/training/docs/training-jobs#
        # formatting_your_configuration_parameters). For example: ```yaml trainingInput:
        # scheduling: maxWaitTime: 3600s ```
        # Corresponds to the JSON property `maxWaitTime`
        # @return [String]
        attr_accessor :max_wait_time
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @max_running_time = args[:max_running_time] if args.key?(:max_running_time)
          @max_wait_time = args[:max_wait_time] if args.key?(:max_wait_time)
        end
      end
      
      # Request message for the SetDefaultVersion request.
      class GoogleCloudMlV1SetDefaultVersionRequest
        include Google::Apis::Core::Hashable
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
        end
      end
      
      # 
      class GoogleCloudMlV1StopTrialRequest
        include Google::Apis::Core::Hashable
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
        end
      end
      
      # A message representing a Study.
      class GoogleCloudMlV1Study
        include Google::Apis::Core::Hashable
      
        # Output only. Time at which the study was created.
        # Corresponds to the JSON property `createTime`
        # @return [String]
        attr_accessor :create_time
      
        # Output only. A human readable reason why the Study is inactive. This should be
        # empty if a study is ACTIVE or COMPLETED.
        # Corresponds to the JSON property `inactiveReason`
        # @return [String]
        attr_accessor :inactive_reason
      
        # Output only. The name of a study.
        # Corresponds to the JSON property `name`
        # @return [String]
        attr_accessor :name
      
        # Output only. The detailed state of a study.
        # Corresponds to the JSON property `state`
        # @return [String]
        attr_accessor :state
      
        # Represents configuration of a study.
        # Corresponds to the JSON property `studyConfig`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1StudyConfig]
        attr_accessor :study_config
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @create_time = args[:create_time] if args.key?(:create_time)
          @inactive_reason = args[:inactive_reason] if args.key?(:inactive_reason)
          @name = args[:name] if args.key?(:name)
          @state = args[:state] if args.key?(:state)
          @study_config = args[:study_config] if args.key?(:study_config)
        end
      end
      
      # Represents configuration of a study.
      class GoogleCloudMlV1StudyConfig
        include Google::Apis::Core::Hashable
      
        # The search algorithm specified for the study.
        # Corresponds to the JSON property `algorithm`
        # @return [String]
        attr_accessor :algorithm
      
        # Configuration for Automated Early Stopping of Trials. If no
        # implementation_config is set, automated early stopping will not be run.
        # Corresponds to the JSON property `automatedStoppingConfig`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1AutomatedStoppingConfig]
        attr_accessor :automated_stopping_config
      
        # Metric specs for the study.
        # Corresponds to the JSON property `metrics`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1StudyConfigMetricSpec>]
        attr_accessor :metrics
      
        # Required. The set of parameters to tune.
        # Corresponds to the JSON property `parameters`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1StudyConfigParameterSpec>]
        attr_accessor :parameters
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @algorithm = args[:algorithm] if args.key?(:algorithm)
          @automated_stopping_config = args[:automated_stopping_config] if args.key?(:automated_stopping_config)
          @metrics = args[:metrics] if args.key?(:metrics)
          @parameters = args[:parameters] if args.key?(:parameters)
        end
      end
      
      # Metadata field of a google.longrunning.Operation associated with a
      # SuggestTrialsRequest.
      class GoogleCloudMlV1SuggestTrialsMetadata
        include Google::Apis::Core::Hashable
      
        # The identifier of the client that is requesting the suggestion.
        # Corresponds to the JSON property `clientId`
        # @return [String]
        attr_accessor :client_id
      
        # The time operation was submitted.
        # Corresponds to the JSON property `createTime`
        # @return [String]
        attr_accessor :create_time
      
        # The name of the study that the trial belongs to.
        # Corresponds to the JSON property `study`
        # @return [String]
        attr_accessor :study
      
        # The number of suggestions requested.
        # Corresponds to the JSON property `suggestionCount`
        # @return [Fixnum]
        attr_accessor :suggestion_count
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @client_id = args[:client_id] if args.key?(:client_id)
          @create_time = args[:create_time] if args.key?(:create_time)
          @study = args[:study] if args.key?(:study)
          @suggestion_count = args[:suggestion_count] if args.key?(:suggestion_count)
        end
      end
      
      # The request message for the SuggestTrial service method.
      class GoogleCloudMlV1SuggestTrialsRequest
        include Google::Apis::Core::Hashable
      
        # Required. The identifier of the client that is requesting the suggestion. If
        # multiple SuggestTrialsRequests have the same `client_id`, the service will
        # return the identical suggested trial if the trial is pending, and provide a
        # new trial if the last suggested trial was completed.
        # Corresponds to the JSON property `clientId`
        # @return [String]
        attr_accessor :client_id
      
        # Required. The number of suggestions requested.
        # Corresponds to the JSON property `suggestionCount`
        # @return [Fixnum]
        attr_accessor :suggestion_count
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @client_id = args[:client_id] if args.key?(:client_id)
          @suggestion_count = args[:suggestion_count] if args.key?(:suggestion_count)
        end
      end
      
      # This message will be placed in the response field of a completed google.
      # longrunning.Operation associated with a SuggestTrials request.
      class GoogleCloudMlV1SuggestTrialsResponse
        include Google::Apis::Core::Hashable
      
        # The time at which operation processing completed.
        # Corresponds to the JSON property `endTime`
        # @return [String]
        attr_accessor :end_time
      
        # The time at which the operation was started.
        # Corresponds to the JSON property `startTime`
        # @return [String]
        attr_accessor :start_time
      
        # The state of the study.
        # Corresponds to the JSON property `studyState`
        # @return [String]
        attr_accessor :study_state
      
        # A list of trials.
        # Corresponds to the JSON property `trials`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1Trial>]
        attr_accessor :trials
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @end_time = args[:end_time] if args.key?(:end_time)
          @start_time = args[:start_time] if args.key?(:start_time)
          @study_state = args[:study_state] if args.key?(:study_state)
          @trials = args[:trials] if args.key?(:trials)
        end
      end
      
      # Represents input parameters for a training job. When using the gcloud command
      # to submit your training job, you can specify the input parameters as command-
      # line arguments and/or in a YAML configuration file referenced from the --
      # config command-line argument. For details, see the guide to [submitting a
      # training job](/ai-platform/training/docs/training-jobs).
      class GoogleCloudMlV1TrainingInput
        include Google::Apis::Core::Hashable
      
        # Optional. Command-line arguments passed to the training application when it
        # starts. If your job uses a custom container, then the arguments are passed to
        # the container's `ENTRYPOINT` command.
        # Corresponds to the JSON property `args`
        # @return [Array<String>]
        attr_accessor :args
      
        # Represents a custom encryption key configuration that can be applied to a
        # resource.
        # Corresponds to the JSON property `encryptionConfig`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1EncryptionConfig]
        attr_accessor :encryption_config
      
        # Represents the configuration for a replica in a cluster.
        # Corresponds to the JSON property `evaluatorConfig`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig]
        attr_accessor :evaluator_config
      
        # Optional. The number of evaluator replicas to use for the training job. Each
        # replica in the cluster will be of the type specified in `evaluator_type`. This
        # value can only be used when `scale_tier` is set to `CUSTOM`. If you set this
        # value, you must also set `evaluator_type`. The default value is zero.
        # Corresponds to the JSON property `evaluatorCount`
        # @return [Fixnum]
        attr_accessor :evaluator_count
      
        # Optional. Specifies the type of virtual machine to use for your training job's
        # evaluator nodes. The supported values are the same as those described in the
        # entry for `masterType`. This value must be consistent with the category of
        # machine type that `masterType` uses. In other words, both must be Compute
        # Engine machine types or both must be legacy machine types. This value must be
        # present when `scaleTier` is set to `CUSTOM` and `evaluatorCount` is greater
        # than zero.
        # Corresponds to the JSON property `evaluatorType`
        # @return [String]
        attr_accessor :evaluator_type
      
        # Represents a set of hyperparameters to optimize.
        # Corresponds to the JSON property `hyperparameters`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1HyperparameterSpec]
        attr_accessor :hyperparameters
      
        # Optional. A Google Cloud Storage path in which to store training outputs and
        # other data needed for training. This path is passed to your TensorFlow program
        # as the '--job-dir' command-line argument. The benefit of specifying this field
        # is that Cloud ML validates the path for use in training.
        # Corresponds to the JSON property `jobDir`
        # @return [String]
        attr_accessor :job_dir
      
        # Represents the configuration for a replica in a cluster.
        # Corresponds to the JSON property `masterConfig`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig]
        attr_accessor :master_config
      
        # Optional. Specifies the type of virtual machine to use for your training job's
        # master worker. You must specify this field when `scaleTier` is set to `CUSTOM`.
        # You can use certain Compute Engine machine types directly in this field. The
        # following types are supported: - `n1-standard-4` - `n1-standard-8` - `n1-
        # standard-16` - `n1-standard-32` - `n1-standard-64` - `n1-standard-96` - `n1-
        # highmem-2` - `n1-highmem-4` - `n1-highmem-8` - `n1-highmem-16` - `n1-highmem-
        # 32` - `n1-highmem-64` - `n1-highmem-96` - `n1-highcpu-16` - `n1-highcpu-32` - `
        # n1-highcpu-64` - `n1-highcpu-96` Learn more about [using Compute Engine
        # machine types](/ml-engine/docs/machine-types#compute-engine-machine-types).
        # Alternatively, you can use the following legacy machine types: - `standard` - `
        # large_model` - `complex_model_s` - `complex_model_m` - `complex_model_l` - `
        # standard_gpu` - `complex_model_m_gpu` - `complex_model_l_gpu` - `standard_p100`
        # - `complex_model_m_p100` - `standard_v100` - `large_model_v100` - `
        # complex_model_m_v100` - `complex_model_l_v100` Learn more about [using legacy
        # machine types](/ml-engine/docs/machine-types#legacy-machine-types). Finally,
        # if you want to use a TPU for training, specify `cloud_tpu` in this field.
        # Learn more about the [special configuration options for training with TPUs](/
        # ml-engine/docs/tensorflow/using-tpus#configuring_a_custom_tpu_machine).
        # Corresponds to the JSON property `masterType`
        # @return [String]
        attr_accessor :master_type
      
        # Optional. The full name of the [Compute Engine network](/vpc/docs/vpc) to
        # which the Job is peered. For example, `projects/12345/global/networks/myVPC`.
        # The format of this field is `projects/`project`/global/networks/`network``,
        # where `project` is a project number (like `12345`) and `network` is network
        # name. Private services access must already be configured for the network. If
        # left unspecified, the Job is not peered with any network. [Learn about using
        # VPC Network Peering.](/ai-platform/training/docs/vpc-peering).
        # Corresponds to the JSON property `network`
        # @return [String]
        attr_accessor :network
      
        # Required. The Google Cloud Storage location of the packages with the training
        # program and any additional dependencies. The maximum number of package URIs is
        # 100.
        # Corresponds to the JSON property `packageUris`
        # @return [Array<String>]
        attr_accessor :package_uris
      
        # Represents the configuration for a replica in a cluster.
        # Corresponds to the JSON property `parameterServerConfig`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig]
        attr_accessor :parameter_server_config
      
        # Optional. The number of parameter server replicas to use for the training job.
        # Each replica in the cluster will be of the type specified in `
        # parameter_server_type`. This value can only be used when `scale_tier` is set
        # to `CUSTOM`. If you set this value, you must also set `parameter_server_type`.
        # The default value is zero.
        # Corresponds to the JSON property `parameterServerCount`
        # @return [Fixnum]
        attr_accessor :parameter_server_count
      
        # Optional. Specifies the type of virtual machine to use for your training job's
        # parameter server. The supported values are the same as those described in the
        # entry for `master_type`. This value must be consistent with the category of
        # machine type that `masterType` uses. In other words, both must be Compute
        # Engine machine types or both must be legacy machine types. This value must be
        # present when `scaleTier` is set to `CUSTOM` and `parameter_server_count` is
        # greater than zero.
        # Corresponds to the JSON property `parameterServerType`
        # @return [String]
        attr_accessor :parameter_server_type
      
        # Required. The Python module name to run after installing the packages.
        # Corresponds to the JSON property `pythonModule`
        # @return [String]
        attr_accessor :python_module
      
        # Optional. The version of Python used in training. You must either specify this
        # field or specify `masterConfig.imageUri`. The following Python versions are
        # available: * Python '3.7' is available when `runtime_version` is set to '1.15'
        # or later. * Python '3.5' is available when `runtime_version` is set to a
        # version from '1.4' to '1.14'. * Python '2.7' is available when `
        # runtime_version` is set to '1.15' or earlier. Read more about the Python
        # versions available for [each runtime version](/ml-engine/docs/runtime-version-
        # list).
        # Corresponds to the JSON property `pythonVersion`
        # @return [String]
        attr_accessor :python_version
      
        # Required. The region to run the training job in. See the [available regions](/
        # ai-platform/training/docs/regions) for AI Platform Training.
        # Corresponds to the JSON property `region`
        # @return [String]
        attr_accessor :region
      
        # Optional. The AI Platform runtime version to use for training. You must either
        # specify this field or specify `masterConfig.imageUri`. For more information,
        # see the [runtime version list](/ai-platform/training/docs/runtime-version-list)
        # and learn [how to manage runtime versions](/ai-platform/training/docs/
        # versioning).
        # Corresponds to the JSON property `runtimeVersion`
        # @return [String]
        attr_accessor :runtime_version
      
        # Required. Specifies the machine types, the number of replicas for workers and
        # parameter servers.
        # Corresponds to the JSON property `scaleTier`
        # @return [String]
        attr_accessor :scale_tier
      
        # All parameters related to scheduling of training jobs.
        # Corresponds to the JSON property `scheduling`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1Scheduling]
        attr_accessor :scheduling
      
        # Optional. The email address of a service account to use when running the
        # training appplication. You must have the `iam.serviceAccounts.actAs`
        # permission for the specified service account. In addition, the AI Platform
        # Training Google-managed service account must have the `roles/iam.
        # serviceAccountAdmin` role for the specified service account. [Learn more about
        # configuring a service account.](/ai-platform/training/docs/custom-service-
        # account) If not specified, the AI Platform Training Google-managed service
        # account is used by default.
        # Corresponds to the JSON property `serviceAccount`
        # @return [String]
        attr_accessor :service_account
      
        # Optional. Use `chief` instead of `master` in the `TF_CONFIG` environment
        # variable when training with a custom container. Defaults to `false`. [Learn
        # more about this field.](/ai-platform/training/docs/distributed-training-
        # details#chief-versus-master) This field has no effect for training jobs that
        # don't use a custom container.
        # Corresponds to the JSON property `useChiefInTfConfig`
        # @return [Boolean]
        attr_accessor :use_chief_in_tf_config
        alias_method :use_chief_in_tf_config?, :use_chief_in_tf_config
      
        # Represents the configuration for a replica in a cluster.
        # Corresponds to the JSON property `workerConfig`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1ReplicaConfig]
        attr_accessor :worker_config
      
        # Optional. The number of worker replicas to use for the training job. Each
        # replica in the cluster will be of the type specified in `worker_type`. This
        # value can only be used when `scale_tier` is set to `CUSTOM`. If you set this
        # value, you must also set `worker_type`. The default value is zero.
        # Corresponds to the JSON property `workerCount`
        # @return [Fixnum]
        attr_accessor :worker_count
      
        # Optional. Specifies the type of virtual machine to use for your training job's
        # worker nodes. The supported values are the same as those described in the
        # entry for `masterType`. This value must be consistent with the category of
        # machine type that `masterType` uses. In other words, both must be Compute
        # Engine machine types or both must be legacy machine types. If you use `
        # cloud_tpu` for this value, see special instructions for [configuring a custom
        # TPU machine](/ml-engine/docs/tensorflow/using-tpus#
        # configuring_a_custom_tpu_machine). This value must be present when `scaleTier`
        # is set to `CUSTOM` and `workerCount` is greater than zero.
        # Corresponds to the JSON property `workerType`
        # @return [String]
        attr_accessor :worker_type
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @args = args[:args] if args.key?(:args)
          @encryption_config = args[:encryption_config] if args.key?(:encryption_config)
          @evaluator_config = args[:evaluator_config] if args.key?(:evaluator_config)
          @evaluator_count = args[:evaluator_count] if args.key?(:evaluator_count)
          @evaluator_type = args[:evaluator_type] if args.key?(:evaluator_type)
          @hyperparameters = args[:hyperparameters] if args.key?(:hyperparameters)
          @job_dir = args[:job_dir] if args.key?(:job_dir)
          @master_config = args[:master_config] if args.key?(:master_config)
          @master_type = args[:master_type] if args.key?(:master_type)
          @network = args[:network] if args.key?(:network)
          @package_uris = args[:package_uris] if args.key?(:package_uris)
          @parameter_server_config = args[:parameter_server_config] if args.key?(:parameter_server_config)
          @parameter_server_count = args[:parameter_server_count] if args.key?(:parameter_server_count)
          @parameter_server_type = args[:parameter_server_type] if args.key?(:parameter_server_type)
          @python_module = args[:python_module] if args.key?(:python_module)
          @python_version = args[:python_version] if args.key?(:python_version)
          @region = args[:region] if args.key?(:region)
          @runtime_version = args[:runtime_version] if args.key?(:runtime_version)
          @scale_tier = args[:scale_tier] if args.key?(:scale_tier)
          @scheduling = args[:scheduling] if args.key?(:scheduling)
          @service_account = args[:service_account] if args.key?(:service_account)
          @use_chief_in_tf_config = args[:use_chief_in_tf_config] if args.key?(:use_chief_in_tf_config)
          @worker_config = args[:worker_config] if args.key?(:worker_config)
          @worker_count = args[:worker_count] if args.key?(:worker_count)
          @worker_type = args[:worker_type] if args.key?(:worker_type)
        end
      end
      
      # Represents results of a training job. Output only.
      class GoogleCloudMlV1TrainingOutput
        include Google::Apis::Core::Hashable
      
        # Represents output related to a built-in algorithm Job.
        # Corresponds to the JSON property `builtInAlgorithmOutput`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1BuiltInAlgorithmOutput]
        attr_accessor :built_in_algorithm_output
      
        # The number of hyperparameter tuning trials that completed successfully. Only
        # set for hyperparameter tuning jobs.
        # Corresponds to the JSON property `completedTrialCount`
        # @return [Fixnum]
        attr_accessor :completed_trial_count
      
        # The amount of ML units consumed by the job.
        # Corresponds to the JSON property `consumedMLUnits`
        # @return [Float]
        attr_accessor :consumed_ml_units
      
        # The TensorFlow summary tag name used for optimizing hyperparameter tuning
        # trials. See [`HyperparameterSpec.hyperparameterMetricTag`](#HyperparameterSpec.
        # FIELDS.hyperparameter_metric_tag) for more information. Only set for
        # hyperparameter tuning jobs.
        # Corresponds to the JSON property `hyperparameterMetricTag`
        # @return [String]
        attr_accessor :hyperparameter_metric_tag
      
        # Whether this job is a built-in Algorithm job.
        # Corresponds to the JSON property `isBuiltInAlgorithmJob`
        # @return [Boolean]
        attr_accessor :is_built_in_algorithm_job
        alias_method :is_built_in_algorithm_job?, :is_built_in_algorithm_job
      
        # Whether this job is a hyperparameter tuning job.
        # Corresponds to the JSON property `isHyperparameterTuningJob`
        # @return [Boolean]
        attr_accessor :is_hyperparameter_tuning_job
        alias_method :is_hyperparameter_tuning_job?, :is_hyperparameter_tuning_job
      
        # Results for individual Hyperparameter trials. Only set for hyperparameter
        # tuning jobs.
        # Corresponds to the JSON property `trials`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1HyperparameterOutput>]
        attr_accessor :trials
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @built_in_algorithm_output = args[:built_in_algorithm_output] if args.key?(:built_in_algorithm_output)
          @completed_trial_count = args[:completed_trial_count] if args.key?(:completed_trial_count)
          @consumed_ml_units = args[:consumed_ml_units] if args.key?(:consumed_ml_units)
          @hyperparameter_metric_tag = args[:hyperparameter_metric_tag] if args.key?(:hyperparameter_metric_tag)
          @is_built_in_algorithm_job = args[:is_built_in_algorithm_job] if args.key?(:is_built_in_algorithm_job)
          @is_hyperparameter_tuning_job = args[:is_hyperparameter_tuning_job] if args.key?(:is_hyperparameter_tuning_job)
          @trials = args[:trials] if args.key?(:trials)
        end
      end
      
      # A message representing a trial.
      class GoogleCloudMlV1Trial
        include Google::Apis::Core::Hashable
      
        # Output only. The identifier of the client that originally requested this trial.
        # Corresponds to the JSON property `clientId`
        # @return [String]
        attr_accessor :client_id
      
        # Output only. Time at which the trial's status changed to COMPLETED.
        # Corresponds to the JSON property `endTime`
        # @return [String]
        attr_accessor :end_time
      
        # A message representing a measurement.
        # Corresponds to the JSON property `finalMeasurement`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1Measurement]
        attr_accessor :final_measurement
      
        # Output only. A human readable string describing why the trial is infeasible.
        # This should only be set if trial_infeasible is true.
        # Corresponds to the JSON property `infeasibleReason`
        # @return [String]
        attr_accessor :infeasible_reason
      
        # A list of measurements that are strictly lexicographically ordered by their
        # induced tuples (steps, elapsed_time). These are used for early stopping
        # computations.
        # Corresponds to the JSON property `measurements`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1Measurement>]
        attr_accessor :measurements
      
        # Output only. Name of the trial assigned by the service.
        # Corresponds to the JSON property `name`
        # @return [String]
        attr_accessor :name
      
        # The parameters of the trial.
        # Corresponds to the JSON property `parameters`
        # @return [Array<Google::Apis::MlV1::GoogleCloudMlV1TrialParameter>]
        attr_accessor :parameters
      
        # Output only. Time at which the trial was started.
        # Corresponds to the JSON property `startTime`
        # @return [String]
        attr_accessor :start_time
      
        # The detailed state of a trial.
        # Corresponds to the JSON property `state`
        # @return [String]
        attr_accessor :state
      
        # Output only. If true, the parameters in this trial are not attempted again.
        # Corresponds to the JSON property `trialInfeasible`
        # @return [Boolean]
        attr_accessor :trial_infeasible
        alias_method :trial_infeasible?, :trial_infeasible
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @client_id = args[:client_id] if args.key?(:client_id)
          @end_time = args[:end_time] if args.key?(:end_time)
          @final_measurement = args[:final_measurement] if args.key?(:final_measurement)
          @infeasible_reason = args[:infeasible_reason] if args.key?(:infeasible_reason)
          @measurements = args[:measurements] if args.key?(:measurements)
          @name = args[:name] if args.key?(:name)
          @parameters = args[:parameters] if args.key?(:parameters)
          @start_time = args[:start_time] if args.key?(:start_time)
          @state = args[:state] if args.key?(:state)
          @trial_infeasible = args[:trial_infeasible] if args.key?(:trial_infeasible)
        end
      end
      
      # Represents a version of the model. Each version is a trained model deployed in
      # the cloud, ready to handle prediction requests. A model can have multiple
      # versions. You can get information about all of the versions of a given model
      # by calling projects.models.versions.list.
      class GoogleCloudMlV1Version
        include Google::Apis::Core::Hashable
      
        # Represents a hardware accelerator request config. Note that the
        # AcceleratorConfig can be used in both Jobs and Versions. Learn more about [
        # accelerators for training](/ml-engine/docs/using-gpus) and [accelerators for
        # online prediction](/ml-engine/docs/machine-types-online-prediction#gpus).
        # Corresponds to the JSON property `acceleratorConfig`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1AcceleratorConfig]
        attr_accessor :accelerator_config
      
        # Options for automatically scaling a model.
        # Corresponds to the JSON property `autoScaling`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1AutoScaling]
        attr_accessor :auto_scaling
      
        # Specify a custom container to deploy. Our ContainerSpec is a subset of the
        # Kubernetes Container specification. https://kubernetes.io/docs/reference/
        # generated/kubernetes-api/v1.10/#container-v1-core
        # Corresponds to the JSON property `container`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1ContainerSpec]
        attr_accessor :container
      
        # Output only. The time the version was created.
        # Corresponds to the JSON property `createTime`
        # @return [String]
        attr_accessor :create_time
      
        # Required. The Cloud Storage location of the trained model used to create the
        # version. See the [guide to model deployment](/ml-engine/docs/tensorflow/
        # deploying-models) for more information. When passing Version to projects.
        # models.versions.create the model service uses the specified location as the
        # source of the model. Once deployed, the model version is hosted by the
        # prediction service, so this location is useful only as a historical record.
        # The total number of model files can't exceed 1000.
        # Corresponds to the JSON property `deploymentUri`
        # @return [String]
        attr_accessor :deployment_uri
      
        # Optional. The description specified for the version when it was created.
        # Corresponds to the JSON property `description`
        # @return [String]
        attr_accessor :description
      
        # Output only. The details of a failure or a cancellation.
        # Corresponds to the JSON property `errorMessage`
        # @return [String]
        attr_accessor :error_message
      
        # `etag` is used for optimistic concurrency control as a way to help prevent
        # simultaneous updates of a model from overwriting each other. It is strongly
        # suggested that systems make use of the `etag` in the read-modify-write cycle
        # to perform model updates in order to avoid race conditions: An `etag` is
        # returned in the response to `GetVersion`, and systems are expected to put that
        # etag in the request to `UpdateVersion` to ensure that their change will be
        # applied to the model as intended.
        # Corresponds to the JSON property `etag`
        # NOTE: Values are automatically base64 encoded/decoded in the client library.
        # @return [String]
        attr_accessor :etag
      
        # Message holding configuration options for explaining model predictions. There
        # are three feature attribution methods supported for TensorFlow models:
        # integrated gradients, sampled Shapley, and XRAI. [Learn more about feature
        # attributions.](/ai-platform/prediction/docs/ai-explanations/overview)
        # Corresponds to the JSON property `explanationConfig`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1ExplanationConfig]
        attr_accessor :explanation_config
      
        # Optional. The machine learning framework AI Platform uses to train this
        # version of the model. Valid values are `TENSORFLOW`, `SCIKIT_LEARN`, `XGBOOST`.
        # If you do not specify a framework, AI Platform will analyze files in the
        # deployment_uri to determine a framework. If you choose `SCIKIT_LEARN` or `
        # XGBOOST`, you must also set the runtime version of the model to 1.4 or greater.
        # Do **not** specify a framework if you're deploying a [custom prediction
        # routine](/ml-engine/docs/tensorflow/custom-prediction-routines). If you
        # specify a [Compute Engine (N1) machine type](/ml-engine/docs/machine-types-
        # online-prediction) in the `machineType` field, you must specify `TENSORFLOW`
        # for the framework.
        # Corresponds to the JSON property `framework`
        # @return [String]
        attr_accessor :framework
      
        # Output only. If true, this version will be used to handle prediction requests
        # that do not specify a version. You can change the default version by calling
        # projects.methods.versions.setDefault.
        # Corresponds to the JSON property `isDefault`
        # @return [Boolean]
        attr_accessor :is_default
        alias_method :is_default?, :is_default
      
        # Optional. One or more labels that you can add, to organize your model versions.
        # Each label is a key-value pair, where both the key and the value are
        # arbitrary strings that you supply. For more information, see the documentation
        # on using labels.
        # Corresponds to the JSON property `labels`
        # @return [Hash<String,String>]
        attr_accessor :labels
      
        # Output only. The time the version was last used for prediction.
        # Corresponds to the JSON property `lastUseTime`
        # @return [String]
        attr_accessor :last_use_time
      
        # Optional. The type of machine on which to serve the model. Currently only
        # applies to online prediction service. If this field is not specified, it
        # defaults to `mls1-c1-m2`. Online prediction supports the following machine
        # types: * `mls1-c1-m2` * `mls1-c4-m2` * `n1-standard-2` * `n1-standard-4` * `n1-
        # standard-8` * `n1-standard-16` * `n1-standard-32` * `n1-highmem-2` * `n1-
        # highmem-4` * `n1-highmem-8` * `n1-highmem-16` * `n1-highmem-32` * `n1-highcpu-
        # 2` * `n1-highcpu-4` * `n1-highcpu-8` * `n1-highcpu-16` * `n1-highcpu-32` `mls1-
        # c1-m2` is generally available. All other machine types are available in beta.
        # Learn more about the [differences between machine types](/ml-engine/docs/
        # machine-types-online-prediction).
        # Corresponds to the JSON property `machineType`
        # @return [String]
        attr_accessor :machine_type
      
        # Options for manually scaling a model.
        # Corresponds to the JSON property `manualScaling`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1ManualScaling]
        attr_accessor :manual_scaling
      
        # Required. The name specified for the version when it was created. The version
        # name must be unique within the model it is created in.
        # Corresponds to the JSON property `name`
        # @return [String]
        attr_accessor :name
      
        # Optional. Cloud Storage paths (`gs://…`) of packages for [custom prediction
        # routines](/ml-engine/docs/tensorflow/custom-prediction-routines) or [scikit-
        # learn pipelines with custom code](/ml-engine/docs/scikit/exporting-for-
        # prediction#custom-pipeline-code). For a custom prediction routine, one of
        # these packages must contain your Predictor class (see [`predictionClass`](#
        # Version.FIELDS.prediction_class)). Additionally, include any dependencies used
        # by your Predictor or scikit-learn pipeline uses that are not already included
        # in your selected [runtime version](/ml-engine/docs/tensorflow/runtime-version-
        # list). If you specify this field, you must also set [`runtimeVersion`](#
        # Version.FIELDS.runtime_version) to 1.4 or greater.
        # Corresponds to the JSON property `packageUris`
        # @return [Array<String>]
        attr_accessor :package_uris
      
        # Optional. The fully qualified name (module_name.class_name) of a class that
        # implements the Predictor interface described in this reference field. The
        # module containing this class should be included in a package provided to the [`
        # packageUris` field](#Version.FIELDS.package_uris). Specify this field if and
        # only if you are deploying a [custom prediction routine (beta)](/ml-engine/docs/
        # tensorflow/custom-prediction-routines). If you specify this field, you must
        # set [`runtimeVersion`](#Version.FIELDS.runtime_version) to 1.4 or greater and
        # you must set `machineType` to a [legacy (MLS1) machine type](/ml-engine/docs/
        # machine-types-online-prediction). The following code sample provides the
        # Predictor interface: class Predictor(object): """Interface for constructing
        # custom predictors.""" def predict(self, instances, **kwargs): """Performs
        # custom prediction. Instances are the decoded values from the request. They
        # have already been deserialized from JSON. Args: instances: A list of
        # prediction input instances. **kwargs: A dictionary of keyword args provided as
        # additional fields on the predict request body. Returns: A list of outputs
        # containing the prediction results. This list must be JSON serializable. """
        # raise NotImplementedError() @classmethod def from_path(cls, model_dir): """
        # Creates an instance of Predictor using the given path. Loading of the
        # predictor should be done in this method. Args: model_dir: The local directory
        # that contains the exported model file along with any additional files uploaded
        # when creating the version resource. Returns: An instance implementing this
        # Predictor class. """ raise NotImplementedError() Learn more about [the
        # Predictor interface and custom prediction routines](/ml-engine/docs/tensorflow/
        # custom-prediction-routines).
        # Corresponds to the JSON property `predictionClass`
        # @return [String]
        attr_accessor :prediction_class
      
        # Required. The version of Python used in prediction. The following Python
        # versions are available: * Python '3.7' is available when `runtime_version` is
        # set to '1.15' or later. * Python '3.5' is available when `runtime_version` is
        # set to a version from '1.4' to '1.14'. * Python '2.7' is available when `
        # runtime_version` is set to '1.15' or earlier. Read more about the Python
        # versions available for [each runtime version](/ml-engine/docs/runtime-version-
        # list).
        # Corresponds to the JSON property `pythonVersion`
        # @return [String]
        attr_accessor :python_version
      
        # Configuration for logging request-response pairs to a BigQuery table. Online
        # prediction requests to a model version and the responses to these requests are
        # converted to raw strings and saved to the specified BigQuery table. Logging is
        # constrained by [BigQuery quotas and limits](/bigquery/quotas). If your project
        # exceeds BigQuery quotas or limits, AI Platform Prediction does not log request-
        # response pairs, but it continues to serve predictions. If you are using [
        # continuous evaluation](/ml-engine/docs/continuous-evaluation/), you do not
        # need to specify this configuration manually. Setting up continuous evaluation
        # automatically enables logging of request-response pairs.
        # Corresponds to the JSON property `requestLoggingConfig`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1RequestLoggingConfig]
        attr_accessor :request_logging_config
      
        # RouteMap is used to override HTTP paths sent to a Custom Container. If
        # specified, the HTTP server implemented in the ContainerSpec must support the
        # route. If unspecified, standard HTTP paths will be used.
        # Corresponds to the JSON property `routes`
        # @return [Google::Apis::MlV1::GoogleCloudMlV1RouteMap]
        attr_accessor :routes
      
        # Required. The AI Platform runtime version to use for this deployment. For more
        # information, see the [runtime version list](/ml-engine/docs/runtime-version-
        # list) and [how to manage runtime versions](/ml-engine/docs/versioning).
        # Corresponds to the JSON property `runtimeVersion`
        # @return [String]
        attr_accessor :runtime_version
      
        # Optional. Specifies the service account for resource access control.
        # Corresponds to the JSON property `serviceAccount`
        # @return [String]
        attr_accessor :service_account
      
        # Output only. The state of a version.
        # Corresponds to the JSON property `state`
        # @return [String]
        attr_accessor :state
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @accelerator_config = args[:accelerator_config] if args.key?(:accelerator_config)
          @auto_scaling = args[:auto_scaling] if args.key?(:auto_scaling)
          @container = args[:container] if args.key?(:container)
          @create_time = args[:create_time] if args.key?(:create_time)
          @deployment_uri = args[:deployment_uri] if args.key?(:deployment_uri)
          @description = args[:description] if args.key?(:description)
          @error_message = args[:error_message] if args.key?(:error_message)
          @etag = args[:etag] if args.key?(:etag)
          @explanation_config = args[:explanation_config] if args.key?(:explanation_config)
          @framework = args[:framework] if args.key?(:framework)
          @is_default = args[:is_default] if args.key?(:is_default)
          @labels = args[:labels] if args.key?(:labels)
          @last_use_time = args[:last_use_time] if args.key?(:last_use_time)
          @machine_type = args[:machine_type] if args.key?(:machine_type)
          @manual_scaling = args[:manual_scaling] if args.key?(:manual_scaling)
          @name = args[:name] if args.key?(:name)
          @package_uris = args[:package_uris] if args.key?(:package_uris)
          @prediction_class = args[:prediction_class] if args.key?(:prediction_class)
          @python_version = args[:python_version] if args.key?(:python_version)
          @request_logging_config = args[:request_logging_config] if args.key?(:request_logging_config)
          @routes = args[:routes] if args.key?(:routes)
          @runtime_version = args[:runtime_version] if args.key?(:runtime_version)
          @service_account = args[:service_account] if args.key?(:service_account)
          @state = args[:state] if args.key?(:state)
        end
      end
      
      # Attributes credit by computing the XRAI taking advantage of the model's fully
      # differentiable structure. Refer to this paper for more details: https://arxiv.
      # org/abs/1906.02825 Currently only implemented for models with natural image
      # inputs.
      class GoogleCloudMlV1XraiAttribution
        include Google::Apis::Core::Hashable
      
        # Number of steps for approximating the path integral. A good value to start is
        # 50 and gradually increase until the sum to diff property is met within the
        # desired error range.
        # Corresponds to the JSON property `numIntegralSteps`
        # @return [Fixnum]
        attr_accessor :num_integral_steps
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @num_integral_steps = args[:num_integral_steps] if args.key?(:num_integral_steps)
        end
      end
      
      # Specifies the audit configuration for a service. The configuration determines
      # which permission types are logged, and what identities, if any, are exempted
      # from logging. An AuditConfig must have one or more AuditLogConfigs. If there
      # are AuditConfigs for both `allServices` and a specific service, the union of
      # the two AuditConfigs is used for that service: the log_types specified in each
      # AuditConfig are enabled, and the exempted_members in each AuditLogConfig are
      # exempted. Example Policy with multiple AuditConfigs: ` "audit_configs": [ ` "
      # service": "allServices", "audit_log_configs": [ ` "log_type": "DATA_READ", "
      # exempted_members": [ "user:jose@example.com" ] `, ` "log_type": "DATA_WRITE" `,
      # ` "log_type": "ADMIN_READ" ` ] `, ` "service": "sampleservice.googleapis.com",
      # "audit_log_configs": [ ` "log_type": "DATA_READ" `, ` "log_type": "DATA_WRITE"
      # , "exempted_members": [ "user:aliya@example.com" ] ` ] ` ] ` For sampleservice,
      # this policy enables DATA_READ, DATA_WRITE and ADMIN_READ logging. It also
      # exempts jose@example.com from DATA_READ logging, and aliya@example.com from
      # DATA_WRITE logging.
      class GoogleIamV1AuditConfig
        include Google::Apis::Core::Hashable
      
        # The configuration for logging of each type of permission.
        # Corresponds to the JSON property `auditLogConfigs`
        # @return [Array<Google::Apis::MlV1::GoogleIamV1AuditLogConfig>]
        attr_accessor :audit_log_configs
      
        # Specifies a service that will be enabled for audit logging. For example, `
        # storage.googleapis.com`, `cloudsql.googleapis.com`. `allServices` is a special
        # value that covers all services.
        # Corresponds to the JSON property `service`
        # @return [String]
        attr_accessor :service
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @audit_log_configs = args[:audit_log_configs] if args.key?(:audit_log_configs)
          @service = args[:service] if args.key?(:service)
        end
      end
      
      # Provides the configuration for logging a type of permissions. Example: ` "
      # audit_log_configs": [ ` "log_type": "DATA_READ", "exempted_members": [ "user:
      # jose@example.com" ] `, ` "log_type": "DATA_WRITE" ` ] ` This enables '
      # DATA_READ' and 'DATA_WRITE' logging, while exempting jose@example.com from
      # DATA_READ logging.
      class GoogleIamV1AuditLogConfig
        include Google::Apis::Core::Hashable
      
        # Specifies the identities that do not cause logging for this type of permission.
        # Follows the same format of Binding.members.
        # Corresponds to the JSON property `exemptedMembers`
        # @return [Array<String>]
        attr_accessor :exempted_members
      
        # The log type that this config enables.
        # Corresponds to the JSON property `logType`
        # @return [String]
        attr_accessor :log_type
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @exempted_members = args[:exempted_members] if args.key?(:exempted_members)
          @log_type = args[:log_type] if args.key?(:log_type)
        end
      end
      
      # Associates `members` with a `role`.
      class GoogleIamV1Binding
        include Google::Apis::Core::Hashable
      
        # A client-specified ID for this binding. Expected to be globally unique to
        # support the internal bindings-by-ID API.
        # Corresponds to the JSON property `bindingId`
        # @return [String]
        attr_accessor :binding_id
      
        # Represents a textual expression in the Common Expression Language (CEL) syntax.
        # CEL is a C-like expression language. The syntax and semantics of CEL are
        # documented at https://github.com/google/cel-spec. Example (Comparison): title:
        # "Summary size limit" description: "Determines if a summary is less than 100
        # chars" expression: "document.summary.size() < 100" Example (Equality): title: "
        # Requestor is owner" description: "Determines if requestor is the document
        # owner" expression: "document.owner == request.auth.claims.email" Example (
        # Logic): title: "Public documents" description: "Determine whether the document
        # should be publicly visible" expression: "document.type != 'private' &&
        # document.type != 'internal'" Example (Data Manipulation): title: "Notification
        # string" description: "Create a notification string with a timestamp."
        # expression: "'New message received at ' + string(document.create_time)" The
        # exact variables and functions that may be referenced within an expression are
        # determined by the service that evaluates it. See the service documentation for
        # additional information.
        # Corresponds to the JSON property `condition`
        # @return [Google::Apis::MlV1::GoogleTypeExpr]
        attr_accessor :condition
      
        # Specifies the identities requesting access for a Cloud Platform resource. `
        # members` can have the following values: * `allUsers`: A special identifier
        # that represents anyone who is on the internet; with or without a Google
        # account. * `allAuthenticatedUsers`: A special identifier that represents
        # anyone who is authenticated with a Google account or a service account. * `
        # user:`emailid``: An email address that represents a specific Google account.
        # For example, `alice@example.com` . * `serviceAccount:`emailid``: An email
        # address that represents a service account. For example, `my-other-app@appspot.
        # gserviceaccount.com`. * `group:`emailid``: An email address that represents a
        # Google group. For example, `admins@example.com`. * `deleted:user:`emailid`?uid=
        # `uniqueid``: An email address (plus unique identifier) representing a user
        # that has been recently deleted. For example, `alice@example.com?uid=
        # 123456789012345678901`. If the user is recovered, this value reverts to `user:`
        # emailid`` and the recovered user retains the role in the binding. * `deleted:
        # serviceAccount:`emailid`?uid=`uniqueid``: An email address (plus unique
        # identifier) representing a service account that has been recently deleted. For
        # example, `my-other-app@appspot.gserviceaccount.com?uid=123456789012345678901`.
        # If the service account is undeleted, this value reverts to `serviceAccount:`
        # emailid`` and the undeleted service account retains the role in the binding. *
        # `deleted:group:`emailid`?uid=`uniqueid``: An email address (plus unique
        # identifier) representing a Google group that has been recently deleted. For
        # example, `admins@example.com?uid=123456789012345678901`. If the group is
        # recovered, this value reverts to `group:`emailid`` and the recovered group
        # retains the role in the binding. * `domain:`domain``: The G Suite domain (
        # primary) that represents all the users of that domain. For example, `google.
        # com` or `example.com`.
        # Corresponds to the JSON property `members`
        # @return [Array<String>]
        attr_accessor :members
      
        # Role that is assigned to `members`. For example, `roles/viewer`, `roles/editor`
        # , or `roles/owner`.
        # Corresponds to the JSON property `role`
        # @return [String]
        attr_accessor :role
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @binding_id = args[:binding_id] if args.key?(:binding_id)
          @condition = args[:condition] if args.key?(:condition)
          @members = args[:members] if args.key?(:members)
          @role = args[:role] if args.key?(:role)
        end
      end
      
      # An Identity and Access Management (IAM) policy, which specifies access
      # controls for Google Cloud resources. A `Policy` is a collection of `bindings`.
      # A `binding` binds one or more `members` to a single `role`. Members can be
      # user accounts, service accounts, Google groups, and domains (such as G Suite).
      # A `role` is a named list of permissions; each `role` can be an IAM predefined
      # role or a user-created custom role. For some types of Google Cloud resources,
      # a `binding` can also specify a `condition`, which is a logical expression that
      # allows access to a resource only if the expression evaluates to `true`. A
      # condition can add constraints based on attributes of the request, the resource,
      # or both. To learn which resources support conditions in their IAM policies,
      # see the [IAM documentation](https://cloud.google.com/iam/help/conditions/
      # resource-policies). **JSON example:** ` "bindings": [ ` "role": "roles/
      # resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "
      # group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@
      # appspot.gserviceaccount.com" ] `, ` "role": "roles/resourcemanager.
      # organizationViewer", "members": [ "user:eve@example.com" ], "condition": ` "
      # title": "expirable access", "description": "Does not grant access after Sep
      # 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", `
      # ` ], "etag": "BwWWja0YfJA=", "version": 3 ` **YAML example:** bindings: -
      # members: - user:mike@example.com - group:admins@example.com - domain:google.
      # com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/
      # resourcemanager.organizationAdmin - members: - user:eve@example.com role:
      # roles/resourcemanager.organizationViewer condition: title: expirable access
      # description: Does not grant access after Sep 2020 expression: request.time <
      # timestamp('2020-10-01T00:00:00.000Z') - etag: BwWWja0YfJA= - version: 3 For a
      # description of IAM and its features, see the [IAM documentation](https://cloud.
      # google.com/iam/docs/).
      class GoogleIamV1Policy
        include Google::Apis::Core::Hashable
      
        # Specifies cloud audit logging configuration for this policy.
        # Corresponds to the JSON property `auditConfigs`
        # @return [Array<Google::Apis::MlV1::GoogleIamV1AuditConfig>]
        attr_accessor :audit_configs
      
        # Associates a list of `members` to a `role`. Optionally, may specify a `
        # condition` that determines how and when the `bindings` are applied. Each of
        # the `bindings` must contain at least one member.
        # Corresponds to the JSON property `bindings`
        # @return [Array<Google::Apis::MlV1::GoogleIamV1Binding>]
        attr_accessor :bindings
      
        # `etag` is used for optimistic concurrency control as a way to help prevent
        # simultaneous updates of a policy from overwriting each other. It is strongly
        # suggested that systems make use of the `etag` in the read-modify-write cycle
        # to perform policy updates in order to avoid race conditions: An `etag` is
        # returned in the response to `getIamPolicy`, and systems are expected to put
        # that etag in the request to `setIamPolicy` to ensure that their change will be
        # applied to the same version of the policy. **Important:** If you use IAM
        # Conditions, you must include the `etag` field whenever you call `setIamPolicy`.
        # If you omit this field, then IAM allows you to overwrite a version `3` policy
        # with a version `1` policy, and all of the conditions in the version `3` policy
        # are lost.
        # Corresponds to the JSON property `etag`
        # NOTE: Values are automatically base64 encoded/decoded in the client library.
        # @return [String]
        attr_accessor :etag
      
        # Specifies the format of the policy. Valid values are `0`, `1`, and `3`.
        # Requests that specify an invalid value are rejected. Any operation that
        # affects conditional role bindings must specify version `3`. This requirement
        # applies to the following operations: * Getting a policy that includes a
        # conditional role binding * Adding a conditional role binding to a policy *
        # Changing a conditional role binding in a policy * Removing any role binding,
        # with or without a condition, from a policy that includes conditions **
        # Important:** If you use IAM Conditions, you must include the `etag` field
        # whenever you call `setIamPolicy`. If you omit this field, then IAM allows you
        # to overwrite a version `3` policy with a version `1` policy, and all of the
        # conditions in the version `3` policy are lost. If a policy does not include
        # any conditions, operations on that policy may specify any valid version or
        # leave the field unset. To learn which resources support conditions in their
        # IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/
        # conditions/resource-policies).
        # Corresponds to the JSON property `version`
        # @return [Fixnum]
        attr_accessor :version
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @audit_configs = args[:audit_configs] if args.key?(:audit_configs)
          @bindings = args[:bindings] if args.key?(:bindings)
          @etag = args[:etag] if args.key?(:etag)
          @version = args[:version] if args.key?(:version)
        end
      end
      
      # Request message for `SetIamPolicy` method.
      class GoogleIamV1SetIamPolicyRequest
        include Google::Apis::Core::Hashable
      
        # An Identity and Access Management (IAM) policy, which specifies access
        # controls for Google Cloud resources. A `Policy` is a collection of `bindings`.
        # A `binding` binds one or more `members` to a single `role`. Members can be
        # user accounts, service accounts, Google groups, and domains (such as G Suite).
        # A `role` is a named list of permissions; each `role` can be an IAM predefined
        # role or a user-created custom role. For some types of Google Cloud resources,
        # a `binding` can also specify a `condition`, which is a logical expression that
        # allows access to a resource only if the expression evaluates to `true`. A
        # condition can add constraints based on attributes of the request, the resource,
        # or both. To learn which resources support conditions in their IAM policies,
        # see the [IAM documentation](https://cloud.google.com/iam/help/conditions/
        # resource-policies). **JSON example:** ` "bindings": [ ` "role": "roles/
        # resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "
        # group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@
        # appspot.gserviceaccount.com" ] `, ` "role": "roles/resourcemanager.
        # organizationViewer", "members": [ "user:eve@example.com" ], "condition": ` "
        # title": "expirable access", "description": "Does not grant access after Sep
        # 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", `
        # ` ], "etag": "BwWWja0YfJA=", "version": 3 ` **YAML example:** bindings: -
        # members: - user:mike@example.com - group:admins@example.com - domain:google.
        # com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/
        # resourcemanager.organizationAdmin - members: - user:eve@example.com role:
        # roles/resourcemanager.organizationViewer condition: title: expirable access
        # description: Does not grant access after Sep 2020 expression: request.time <
        # timestamp('2020-10-01T00:00:00.000Z') - etag: BwWWja0YfJA= - version: 3 For a
        # description of IAM and its features, see the [IAM documentation](https://cloud.
        # google.com/iam/docs/).
        # Corresponds to the JSON property `policy`
        # @return [Google::Apis::MlV1::GoogleIamV1Policy]
        attr_accessor :policy
      
        # OPTIONAL: A FieldMask specifying which fields of the policy to modify. Only
        # the fields in the mask will be modified. If no mask is provided, the following
        # default mask is used: `paths: "bindings, etag"`
        # Corresponds to the JSON property `updateMask`
        # @return [String]
        attr_accessor :update_mask
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @policy = args[:policy] if args.key?(:policy)
          @update_mask = args[:update_mask] if args.key?(:update_mask)
        end
      end
      
      # Request message for `TestIamPermissions` method.
      class GoogleIamV1TestIamPermissionsRequest
        include Google::Apis::Core::Hashable
      
        # The set of permissions to check for the `resource`. Permissions with wildcards
        # (such as '*' or 'storage.*') are not allowed. For more information see [IAM
        # Overview](https://cloud.google.com/iam/docs/overview#permissions).
        # Corresponds to the JSON property `permissions`
        # @return [Array<String>]
        attr_accessor :permissions
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @permissions = args[:permissions] if args.key?(:permissions)
        end
      end
      
      # Response message for `TestIamPermissions` method.
      class GoogleIamV1TestIamPermissionsResponse
        include Google::Apis::Core::Hashable
      
        # A subset of `TestPermissionsRequest.permissions` that the caller is allowed.
        # Corresponds to the JSON property `permissions`
        # @return [Array<String>]
        attr_accessor :permissions
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @permissions = args[:permissions] if args.key?(:permissions)
        end
      end
      
      # The response message for Operations.ListOperations.
      class GoogleLongrunningListOperationsResponse
        include Google::Apis::Core::Hashable
      
        # The standard List next-page token.
        # Corresponds to the JSON property `nextPageToken`
        # @return [String]
        attr_accessor :next_page_token
      
        # A list of operations that matches the specified filter in the request.
        # Corresponds to the JSON property `operations`
        # @return [Array<Google::Apis::MlV1::GoogleLongrunningOperation>]
        attr_accessor :operations
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @next_page_token = args[:next_page_token] if args.key?(:next_page_token)
          @operations = args[:operations] if args.key?(:operations)
        end
      end
      
      # This resource represents a long-running operation that is the result of a
      # network API call.
      class GoogleLongrunningOperation
        include Google::Apis::Core::Hashable
      
        # If the value is `false`, it means the operation is still in progress. If `true`
        # , the operation is completed, and either `error` or `response` is available.
        # Corresponds to the JSON property `done`
        # @return [Boolean]
        attr_accessor :done
        alias_method :done?, :done
      
        # The `Status` type defines a logical error model that is suitable for different
        # programming environments, including REST APIs and RPC APIs. It is used by [
        # gRPC](https://github.com/grpc). Each `Status` message contains three pieces of
        # data: error code, error message, and error details. You can find out more
        # about this error model and how to work with it in the [API Design Guide](https:
        # //cloud.google.com/apis/design/errors).
        # Corresponds to the JSON property `error`
        # @return [Google::Apis::MlV1::GoogleRpcStatus]
        attr_accessor :error
      
        # Service-specific metadata associated with the operation. It typically contains
        # progress information and common metadata such as create time. Some services
        # might not provide such metadata. Any method that returns a long-running
        # operation should document the metadata type, if any.
        # Corresponds to the JSON property `metadata`
        # @return [Hash<String,Object>]
        attr_accessor :metadata
      
        # The server-assigned name, which is only unique within the same service that
        # originally returns it. If you use the default HTTP mapping, the `name` should
        # be a resource name ending with `operations/`unique_id``.
        # Corresponds to the JSON property `name`
        # @return [String]
        attr_accessor :name
      
        # The normal response of the operation in case of success. If the original
        # method returns no data on success, such as `Delete`, the response is `google.
        # protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`,
        # the response should be the resource. For other methods, the response should
        # have the type `XxxResponse`, where `Xxx` is the original method name. For
        # example, if the original method name is `TakeSnapshot()`, the inferred
        # response type is `TakeSnapshotResponse`.
        # Corresponds to the JSON property `response`
        # @return [Hash<String,Object>]
        attr_accessor :response
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @done = args[:done] if args.key?(:done)
          @error = args[:error] if args.key?(:error)
          @metadata = args[:metadata] if args.key?(:metadata)
          @name = args[:name] if args.key?(:name)
          @response = args[:response] if args.key?(:response)
        end
      end
      
      # A generic empty message that you can re-use to avoid defining duplicated empty
      # messages in your APIs. A typical example is to use it as the request or the
      # response type of an API method. For instance: service Foo ` rpc Bar(google.
      # protobuf.Empty) returns (google.protobuf.Empty); ` The JSON representation for
      # `Empty` is empty JSON object ````.
      class GoogleProtobufEmpty
        include Google::Apis::Core::Hashable
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
        end
      end
      
      # The `Status` type defines a logical error model that is suitable for different
      # programming environments, including REST APIs and RPC APIs. It is used by [
      # gRPC](https://github.com/grpc). Each `Status` message contains three pieces of
      # data: error code, error message, and error details. You can find out more
      # about this error model and how to work with it in the [API Design Guide](https:
      # //cloud.google.com/apis/design/errors).
      class GoogleRpcStatus
        include Google::Apis::Core::Hashable
      
        # The status code, which should be an enum value of google.rpc.Code.
        # Corresponds to the JSON property `code`
        # @return [Fixnum]
        attr_accessor :code
      
        # A list of messages that carry the error details. There is a common set of
        # message types for APIs to use.
        # Corresponds to the JSON property `details`
        # @return [Array<Hash<String,Object>>]
        attr_accessor :details
      
        # A developer-facing error message, which should be in English. Any user-facing
        # error message should be localized and sent in the google.rpc.Status.details
        # field, or localized by the client.
        # Corresponds to the JSON property `message`
        # @return [String]
        attr_accessor :message
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @code = args[:code] if args.key?(:code)
          @details = args[:details] if args.key?(:details)
          @message = args[:message] if args.key?(:message)
        end
      end
      
      # Represents a textual expression in the Common Expression Language (CEL) syntax.
      # CEL is a C-like expression language. The syntax and semantics of CEL are
      # documented at https://github.com/google/cel-spec. Example (Comparison): title:
      # "Summary size limit" description: "Determines if a summary is less than 100
      # chars" expression: "document.summary.size() < 100" Example (Equality): title: "
      # Requestor is owner" description: "Determines if requestor is the document
      # owner" expression: "document.owner == request.auth.claims.email" Example (
      # Logic): title: "Public documents" description: "Determine whether the document
      # should be publicly visible" expression: "document.type != 'private' &&
      # document.type != 'internal'" Example (Data Manipulation): title: "Notification
      # string" description: "Create a notification string with a timestamp."
      # expression: "'New message received at ' + string(document.create_time)" The
      # exact variables and functions that may be referenced within an expression are
      # determined by the service that evaluates it. See the service documentation for
      # additional information.
      class GoogleTypeExpr
        include Google::Apis::Core::Hashable
      
        # Optional. Description of the expression. This is a longer text which describes
        # the expression, e.g. when hovered over it in a UI.
        # Corresponds to the JSON property `description`
        # @return [String]
        attr_accessor :description
      
        # Textual representation of an expression in Common Expression Language syntax.
        # Corresponds to the JSON property `expression`
        # @return [String]
        attr_accessor :expression
      
        # Optional. String indicating the location of the expression for error reporting,
        # e.g. a file name and a position in the file.
        # Corresponds to the JSON property `location`
        # @return [String]
        attr_accessor :location
      
        # Optional. Title for the expression, i.e. a short string describing its purpose.
        # This can be used e.g. in UIs which allow to enter the expression.
        # Corresponds to the JSON property `title`
        # @return [String]
        attr_accessor :title
      
        def initialize(**args)
           update!(**args)
        end
      
        # Update properties of this object
        def update!(**args)
          @description = args[:description] if args.key?(:description)
          @expression = args[:expression] if args.key?(:expression)
          @location = args[:location] if args.key?(:location)
          @title = args[:title] if args.key?(:title)
        end
      end
    end
  end
end
